화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.11, 1935-1942, November, 2014
Improved fault detection in nonlinear chemical processes using WKPCA-SVDD
E-mail:
Conventional kernel principal component analysis (KPCA) does not always perform well for nonlinear process monitoring because the beneficial information for fault detection may be submerged under the retained kernel principal components (KPCs). To overcome this deficiency, an adaptively weighted KPCA integrated with support vector data description (WKPCA-SVDD) monitoring method is proposed. In WKPCA-SVDD, the importance of each KPC is evaluated online by the change rate of T2 statistic and then distinguished weighting values are set on the KPCs. The behaviors of all KPCs are comprehensively evaluated by the SVDD technique. Since the beneficial information is highlighted, the monitoring performance of the statistic in the dominant subspace can be improved. The proposed WKPCA-SVDD is applied to both a numerical process and the complicated Tennessee Eastman benchmark process. Monitoring results have indicated the efficiency of the WKPCA-SVDD method.
  1. Aguado D, Ferrer A, Ferrer J, Seco A, Chemom. Intell. Lab. Syst., 85, 82 (2007)
  2. AlGhazzawi A, Lennox B, Control Eng. Pract., 16, 294 (2008)
  3. Chiang LH, Russell EL, Braatz RD, Chemom. Intell. Lab. Syst., 50, 243 (2000)
  4. Lee JM, Yoo CK, Choi SW, Vanrolleghem PA, Lee IB, Chem. Eng. Sci., 59(1), 223 (2004)
  5. Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467 (2004)
  6. Odiowei P, Cao Y, Chemom. Intell. Lab. Syst., 103, 59 (2010)
  7. Tomba E, Facco P, Bezzo F, Garcia-Munoz S, Barolo M, Chemom. Intell. Lab. Syst., 116, 67 (2012)
  8. Han K, Park KJ, Chae H, Yoon ES, Korean J. Chem. Eng., 25(1), 13 (2008)
  9. Kim MH, Yoo CK, Korean J. Chem. Eng., 25(5), 947 (2008)
  10. Jiang QC, Yan XF, AIChE J., 60(3), 949 (2014)
  11. Chiang LH, Russell E, Braatz RD, Fault detection and diagnosis in industrial systems, Springer Verlag, London (2001)
  12. Jiang Q, Yan X, Chemom. Intell. Lab. Syst., 119, 11 (2012)
  13. Kresta JV, Macgregor JF, Marlin TE, Can. J. Chem. Eng., 69, 35 (2009)
  14. Jiang QC, Yan XF, Zhao WX, Ind. Eng. Chem. Res., 52(4), 1635 (2013)
  15. Chen Q, Kruger U, Meronk M, Leung A, Control Eng. Pract., 12, 745 (2004)
  16. Jolliffe IT, Applied Statistics, 300 (1982)
  17. Wang HQ, Song ZH, Li P, Ind. Eng. Chem. Res., 41(10), 2455 (2002)
  18. Wold S, Chemom. Intell. Lab. Syst., 23, 149 (1994)
  19. He XB, Yang YP, Yang YH, Chemom. Intell. Lab. Syst., 93, 27 (2008)
  20. Ferreira DL, Kittiwachana S, Fido LA, Thompson DR, Escott RE, Brereton RG, Analyst, 134, 1571 (2009)
  21. Jiang Q, Yan X, Chemom. Intell. Lab. Syst., 127, 121 (2013)
  22. Alzate C, Suykens JA, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32, 335 (2010)
  23. Jiang Q, Yan X, Lv Z, Guo M, Korean J. Chem. Eng., 30, 1181 (2013)
  24. Kramer MA, AIChE J., 37, 233 (1991)
  25. Dong D, Mcavoy TJ, Comput. Chem. Eng., 20(1), 65 (1996)
  26. Hiden HG, Willis MJ, Tham MT, Montague GA, Comput. Chem. Eng., 23(3), 413 (1999)
  27. Scholkopf B, Smola A, Muller KR, Neural Computation, 10, 1299 (1998)
  28. Cui P, Li J, Wang G, Expert Systems with Applications, 34, 1210 (2008)
  29. Ge Z, Song Z, Control Eng. Pract., 16, 1427 (2008)
  30. Ge ZQ, Yang CJ, Song ZH, Chem. Eng. Sci., 64(9), 2245 (2009)
  31. Nguyen VH, Golinval JC, Eng. Struct., 32, 3683 (2010)
  32. Ge Z, Song Z, Expert Syst. Appl., 38, 9821 (2011)
  33. Yang Y, Lee JM, J. Process Control, 23(6), 852 (2013)
  34. Ge ZQ, Gao FR, Song ZH, J. Process Control, 21(6), 949 (2011)
  35. Tax DM, Duin RP, Machine Learning, 54, 45 (2004)
  36. Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245 (1993)
  37. Lyman PR, Georgakis C, Comput. Chem. Eng., 19(3), 321 (1995)