화학공학소재연구정보센터
Langmuir, Vol.30, No.27, 8238-8245, 2014
Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance
Graphene-like nitrogen-doped carbon nanosheets (NCN) have become a fascinating carbon-based material for advanced energy storage and conversion devices, but its easy, cheap, and environmentally friendly synthesis is still a grand challenge. Herein we directly synthesized porous NCN material via the facile pyrolysis of chitosan and urea without the requirement of any catalyst or post-treatment. As-prepared material exhibits a very large BET surface area of similar to 1510 m(2) g(-1) and a high ratio of graphitic/pyridinic nitrogen structure (2.69 at. % graphitic N and 1.20 at. % pyridinic N). Moreover, compared to a commercial Pt/C catalyst, NCN displays excellent electrocatalytic activity, better long-term stability, and methanol tolerance ability toward the oxygen reduction reaction, indicating a promising metal-free alternative to Pt-based cathode catalysts in alkaline fuel cells. This scalable fabrication method supplies a low-cost, high-efficiency metal-free oxygen reduction electrocatalyst and also suggests an economic and sustainable route from biomass-based molecules to value-added nanocarbon materials.