화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.408, 181-190, 2013
Adsorption of alkaloids on ordered mesoporous carbon
An ordered mesoporous carbon (OMC) adsorbent was synthesized, characterized, and evaluated for effective separation and purification of alkaloid compounds from aqueous solutions. The OMC adsorbent has a large BET specific surface area (1532.2 m(2)/g), large pore volume (2.13 cm(3)/g), and narrow pore diameter distribution with a median pore diameter of 4.21 nm. Berberine hydrochloride, colchicine, and matrine were selected as the model compounds for evaluating the adsorption properties of the OMC adsorbent for alkaloid purification. Batch adsorption experiments of pure components in water were carried out to measure both adsorption equilibria and kinetics, and column breakthrough and desorption experiments were performed to validate the separation and regeneration efficacy of the OMC adsorbent. The adsorption equilibrium capacities of berberine hydrochloride, colchicine, and matrine on the OMC adsorbent at 0.100 mg/L and 298 K are 450, 600, and 480 mg/g, respectively, which are more than double the adsorption capacities of these compounds on two commonly used commercial resins (HPD300 and HPD100B) at similar conditions. Adsorption equilibrium of all three alkaloids could be obtained within 120 mm at 298 K. The dynamic adsorption capacities determined from the breakthrough experiments are within 12% of the estimated equilibrium capacities from the Langmuir isotherms; and 74.3-92.8% of the adsorbed amounts could be recovered by desorbing with a 70% alcohol solution. The adsorption isotherms are analyzed with both Langmuir and Freundlich models, the adsorption kinetic data with the pseudo-first-order and pseudo-second-order models, and the breakthrough curves with four breakthrough models. The large adsorption capacity, fast adsorption rate, and easy regeneration make the ordered mesoporous carbon a promising adsorbent for adsorption and purification of alkaloid compounds from the extracts of herbal plants. (C) 2013 Elsevier Inc. All rights reserved.