화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.37, No.3, 2224-2230, 2012
TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water
TiO2 (P25)-graphene (P25-GR) hybrids were prepared via solvothermal reaction of graphene oxide and P25 using ethanol as solvent. The as-prepared P25-GR nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence emission spectroscopy and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. The results indicated that P25-GR nanocomposites possessed enhanced light absorption ability and charge separation efficiency. As photocatalysts, P25-GR hybrids were much better than the bare P25, when they were used in the hydrogen evolution from aqueous methanol solution under Xe-lamp illumination. A significant enhancement in the rate of hydrogen production was achieved through using P25-GR as photocatalysts, comparing to bare P25. The optimum mass ratio of GR to P25 in the hybrids was 0.5 wt%. The higher mass ratio of GR in P25-GR would decrease the photocatalytic activity of P25. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.