화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.5, 701-706, August, 1999
실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향
Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins
초록
실록산 올리고머가 에폭시 수지의 열안정성 및 내부 응력에 미치는 영향에 대해서 고찰하였다. 분자 말단에 에폭시기를 갖는 실록산-에폭시 중합체를 실록산-DDM 예비 중합체와 DGEBA계 에폭시수지를 반응시켜 제조하였다. TGA 데이터를 사용하여 열분해 개시 온도(initial decomposition temperature, IDT), 최대 중량 감소 시의 온도(temperature of maximum rate of weight loss, Tmax), 적분 열분해 진행 온도(integral procedural decomposition temperature, IPDT), 그리고 분해 활성화 에너지(Et) 등을 구한 후 측정된 열안정성은 실록산 올리고머의 함량이 증가함에 따라 증가하였으며 5wt%의 실록산 올리고머를 함유한 조성에서 최대값을 나타내었다. 본 블렌드의 열팽창 계수(coefficient of thermal expansion, αr)와 굴곡 탄성률(Er)로부터 내부응력을 구하였으며, 실록산 올리고머의 함량이 증가할수록 αr와 Er가 동시에 감소해 내부응력이 규칙적으로 저하되었다.
The effect of siloxane oligomer content on thermal stability and internal stress of DGEBA epoxy resin was investigated. Siloxane-epoxy polymers having terminal epoxy group were prepared by reaction of siloxane-DDM prepolymer with DGEBA epoxy resin. Thermal stability was studied in terms of the initial decomposition temperature(IDT), temperature of maximum rate of weight loss(Tmax), integral procedural decomposition temperature(IPDT), and decomposition activation energy(Et) using TGA data. The thermal stability increased with increasing the siloxane oligomer content and showed a maximum value in the case of 5 wt% siloxane oligomer content in the blend system. While, the coefficient of thermal expansion(αr) and the flexural modulus(Er) allowed us to study internal stress of the blend system. As the content of siloxane oligomer increases, the internal stress systematically decreases as decreasing both αr and Er.
  1. Bauer RS, "Epoxy Resin Chemistry," Advances in Chemistry Series, 114, American Chemical Society, Washington, D.C. (1979)
  2. May CA, "Epoxy Resins: Chemistry and Technology," 2nd Ed., Dekker, New York (1988)
  3. Park SJ, Park WB, Lee JR, Polym. J., 31, 28 (1999) 
  4. Jane BJ, Lian JY, Hwang LR, Shin WK, J. Reinf. Plast. Comp., 8, 312 (1989)
  5. Akay M, Cracknell JG, J. Appl. Polym. Sci., 52(5), 663 (1994) 
  6. Pearson RA, Yee AF, J. Mater. Sci., 26, 3828 (1991) 
  7. Wang HB, Li SJ, Ye JY, J. Appl. Polym. Sci., 44, 789 (1992) 
  8. Matsumoto A, Hasegata K, Fukuda A, Polym. Int., 31, 275 (1993)
  9. Ogata M, Kwata T, Kinjo N, Kobunshi. Ronbunshu, 44, 193 (1987)
  10. Noll W, "Chemistry and Technology of Silicones," Academic Press, New York (1960)
  11. Japan Kokai Patent, 1-230623 (1989)
  12. Japan Kokai Patent, 64-9125 (1989)
  13. Park SJ, Lee JR, J. Mater. Sci., 33(3), 647 (1998) 
  14. Kwak GH, Park SJ, Lee JR, Hong SK, Polym.(Korea), 23(2), 281 (1999)
  15. Doyle CD, Anal. Chem., 33, 77 (1961) 
  16. Brenner W, Lum D, Riley MW, "High-Temperature Plastics," Reinhold Publishing Corporation, New York (1962)
  17. Lee LH, J. Polym. Sci., 3, 895 (1965) 
  18. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963) 
  19. Thomas RE, IEEE Trans. Compon. Hybrids Manuf. Technol., 8, 427 (1985) 
  20. Kumata K, Iko K, Tabata H, IEEE Trans. Compon. Hybrids Manuf. Technol., 8, 427 (1985) 
  21. Ho TH, Wang CS, J. Appl. Polym. Sci., 50, 427 (1994)