화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.5, 672-676, August, 1999
용출곡선법과 Frontal Analysis를 이용한 Langmuir 흡착평형식의 측정
Measurement of Langmuir Adsorption Equilibrium by Elution-curve Method and Frontal Analysis
초록
흡착을 이용한 분리공정에서 가장 기본적인 것은 흡착평형식이다. 본 연구에서는 용출곡선법과 frontal analysis(FA)을 사용하여 용출곡선에서 직접 흡착평형식을 구하였다. 역상 액체 크로마토그래피(RP-HPLC)에서 시료는 5''-GMP이고 buffer로서 sodium phosphate를 물에 첨가하여 이동상으로 사용하였다. 이 실험조건에서는 시료의 양이 증가함에 따라서 체류시간이 감소하고 피크의 앞부분이 매우 경사가 심한 langmuir 흡착평형식이 되었다. 용출곡선을 이용한 방법을 이용하여 Langmuir 흡착평형식의 매개변수를 최적화하여 구하였고 FA 방법을 이용하여 고정상의 농도를 용출곡선으로부터 측정하고 회귀분석에 의하여 흡착평형식을 측정하였다. FA 방법에 비해서 용출곡선법은 시료의 양이 적게 소모되고 실험 횟수도 1-2번 정도로 간편하였다. 이동상에 포함된 sodium phosphate의 농도에 따라서 Langmuir 흡착평형식의 매개변수에 미치는 영향을 고찰하였다.
Adsorption isotherm is the most fundamental information in adsorption separation-process. Directly from the elution profile of a peak, the elution-curve method and frontal analysis(FA) were utilized to measure the adsorption isotherm in this work. Using RP-HPLC, sample and the buffer added in mobile phase were 5`-GMP and sodium phosphate, respectively. In this experimental condition, the retention time was decreased with increase in the injected mass of sample. And the front part of a peak was very stiff, so Langmuir adsorption isotherm might be applied. By the elution-curve method, the parameters used in the isotherm were obtained by optimization method, while by the FA, the concentrations of stationary phase were measured from the elution curve and the isotherm was determined by regression analysis. Compared to FA, the consumption of sample was less, and only one or two injections were needed by the elution-curve method. Finally, the effect of concentration of sodium phosphate in mobile phase on the parameters of the isotherm was investigated.
  1. Choi YS, Lee CH, Row KH, J. Korean Ind. Eng. Chem., 9(3), 430 (1998)
  2. Guiochon G, Golshan-Shirazi S, Katti A, Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, Inc, New York, NY (1994)
  3. Barford RA, HPLC in Biotechnology, W.S. Hancock, Ed., Academic Press, New York, p. 63 (1992)
  4. Devault D, J. Am. Chem. Soc., 65, 532 (1943) 
  5. Eltekov YA, Kazakevich YV, Kiselev AV, Zhuchkov AA, Chromatographia, 20, 525 (1985) 
  6. Eltekov YA, Kazakevich YV, J. Chromatogr., 365, 213 (1986) 
  7. Guan H, Stanley BJ, Guiochon G, J. Chromatogr., 659, 27 (1994) 
  8. Reilly CN, Hildebrand GP, Ashley JW, Anal. Chem., 34, 1198 (1962) 
  9. Golshan-Shirazi S, Guichon G, Anal. Chem., 61, 4628 (1989)
  10. Dose EV, Jacobson S, Guiochon G, Anal. Chem., 63, 833 (1991) 
  11. de Jong AWJ, Kraak JC, Poppe H, Nooitgedacht F, J. Chromatogr., 193, 181 (1980) 
  12. Lee JW, Row KH, J. Korean Ind. Eng. Chem., 8(3), 403 (1997)
  13. Akgerman A, Zardkoohi M, J. Chem. Eng. Data, 41(2), 185 (1996) 
  14. Row KH, Lee WK, J. Chem. Eng. Jpn., 19, 173 (1986)