화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.2, 324-329, April, 1999
이산화탄소-이소프로필 알코올계: 고압 상거동 및 SAFT 상태방정식 적용
Carbon Dioxide-Isopropyl Alcohol System: High Pressure Phase Behavior and Application with SAFT Equation of State
초록
본 연구에서는 고압하에서 이산화탄소와 이소프로필 알코올과의 이성분계에 대한 상평형데이터를 얻기 위해 실험을 수행하였다. 실험장치는 정지형(static type)을 사용하였으며, 정확도를 실험하기 위해 80℃에서 이산화탄소-이소프로필 알코올계의 실험을 수행하여 Radosz의 실험결과와 비교하였다. 이산화탄소-이소프로필 알코올과의 이성분계 상거동 실험은 온도 40, 60, 80, 100, 그리고 120℃에서 실험하였으며, 이때 압력은 41∼133 bar 범위였다. 이산화탄소-이소프로필 알코올계에 대해 동일한 압력에서 용해도는 온도가 증가함에 따라 증가함을 알 수 있다. 또한 순성분 이산화탄소와 이소프로필 알코올의 증기압을 서로 연결하는 혼합물 임계곡선을 나타내었다. 본 연구에서 실험한 결과를 statistical associating fluid theory (SAFT)상태방정식에 의해 계산하였으며, 그 결과 온도에 독립적인 두 파라미터에 의해 곡선을 결정하였다.
In this work, high pressure binary phase equilibria data of carbon dioxide and isopropyl alcohol were obtained by experiment. A static type experimental apparatus was made to measure temperature, pressure and phase equilibria composition. The experimental apparatus was tested by comparing the measured phase equilibria data of the carbon dioxide-isopropyl alcohol system at 80℃ with those of Rodosz. The binary phase behavior data of carbon dioxide-isopropyl alcohol system were measured in range of 41 to 133 bar and at temperatures of 40, 60, 80, 100 and 120℃. The solubility of isopropyl alcohol increases as the temperatures increases at constant pressure. Also, these carbon dioxide-alcohol solute system have critical-mixture curves that exhibit maxima in pressure at temperatures between the critical temperatures of carbon dioxide and isopropyl alcohol. The experimental data obtained in this study were modeled using the statistical associating fluid theory(SAFT) equation of state. A good fit of the data was obtained with SAFT using two adjustable parameters for the carbon dioxide-isopropyl alcohol system.
  1. Kim ST, Cho JH, Park SJ, Chem. Ind. Technol., 13(1), 77 (1995)
  2. Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115(1-2), 179 (1996) 
  3. Byun HS, Kim YS, Im JK, J. Korean Ind. Eng. Chem., 9(6), 924 (1998)
  4. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," 4th ed., McGraw-Hill, New York, NY (1987)
  5. Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284 (1990) 
  6. Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994 (1991) 
  7. Wertheim MS, J. Stat. Phys., 35, 19 (1984) 
  8. Wertheim MS, J. Stat. Phys., 35, 35 (1984) 
  9. Wertheim MS, J. Stat. Phys., 42, 459 (1986) 
  10. Wertheim MS, J. Stat. Phys., 42, 477 (1986) 
  11. Sanchez IC, Lacombe RH, Macromolecules, 11, 1145 (1978) 
  12. Vinalehand P, Donobue MD, J. Phys. Chem., 93, 4355 (1989) 
  13. Panayiotou CG, Sanchez IC, Macromolecules, 24, 6231 (1991) 
  14. Carnahan NF, Starling KE, J. Chem. Phys., 51, 635 (1969) 
  15. Chapman WG, Gubbins KE, Joslin CG, Gray CG, Pure Appl. Chem., 59, 53 (1987)
  16. Chapman WG, Jackson G, Gubbins KE, Mol. Phys., 5, 1057 (1988) 
  17. Chapman WG, Gubbins KE, Jackson G, Radosz M, Ind. Eng. Chem. Res., 29, 1709 (1990) 
  18. Alder BJ, Young DA, Mark MA, J. Chem. Phys., 56, 3013 (1972) 
  19. Beret S, Prausnitz JM, AIChE J., 21, 1123 (1975) 
  20. Vargaftik NB, "Handbook of Physical Properties of Liquid and Gases," Springer-Verlag, Berlin (1983)
  21. Radosz M, J. Chem. Eng. Data, 31, 43 (1988)
  22. McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction: Principles and Practice," 2nd ed., Butterworth, Stoneham, MA (1993)