화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.2, 218-224, April, 1999
산성-산화성 분위기에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 연속식 이온교환 특성
Continuous Ion Exchange Characteristics of Ni, Co and Ag Ions in Acidic-Oxidizing Conditions
초록
원자로 정지시 혼상 탈염기의 최적 운전방법을 제안할 목적으로 산성-산화성 분위기에서 저농도의 Ni, Co 및 Ag 이온이 함유된 모의 냉각재 용액의 연속식 이온교환특성을 연구하였다. 금속 이온의 제거 용량에 미치는 양이온 교환수지 형태의 효과로서 H+ 형 수지의 성능은 Li+형 수지의 성능보다 약 6% 정도 높은 것으로 나타났다. 혼합층 이온교환 방법인 양이온과 음이온 수지의 혼합은 비혼합시와 비교하여 금속 이온들의 제거 용량에는 영향을 미치지 않았으나 금속 이온들의 파과곡선의 기울기를 매우 조금 증가시켰다. 냉각재의 산성-산화성 분위기와 관계된 영향으로서 붕산의 첨가는 금속 이온들의 파과곡선의 기울기를 매우 작게 감소시킨 반면, 과산화수소의 첨가는 금속이온들의 제거 용량을 약간 감소시켰다.
Continuous ion exchange characteristics of the synthetic coolant contained Ni, Co and Ag ions of low concentration in acidic-oxidizing conditions have been studied to suggest the guideline for the optimum operation of mixed-bed demineralizer during the shutdown period of a pressurized water reactor (PWR). In the effect of the form of cation resins on the removal capacity of metal ions, the performance of a H+-form resin was about 6% higher than that of a Li+-form resin. Mixed-bed of cation and anion resins in comparison with nonmixed-bed of them, had no affected on the removal capacity of metal ions but very slightly increased the slope of breakthrough curves of metal ions. In the effect related to acidic-oxidizing conditions of the coolant, the addition of boric acid very slightly decreased the slope of breakthrough curves of metal ions, while the addition of hydrogen peroxide slightly decreased the removal capacity of metal ions.
  1. Comley GCW, Prog. Nucl. Energy, 16, 41 (1985) 
  2. Shaw RA, "Recent Progress in LWR Radiation Field Control," BNES-4 (1985)
  3. 中島宣雄, 原子力工學, 33, 27 (1987)
  4. Bergmann CA, "Evaluation of Cobalt Sources in Westing-House Designed Three- and Four- Loop Plants," EPRI-NP-2681 (1982)
  5. Lister DH, "Corrosion Product Release in Light Water Reactors," EPRI NP-3460 (1984)
  6. Nishino Y, Asakura Y, Sawa T, Uchida S, J. Nucl. Sci. Technol., 28, 848 (1991)
  7. Wood CJ, "PWR Primary Shutdown and Startup Chemistry Guidelines," EPRI TR-101884s (1993)
  8. Wood CJ, "PWR Primary Water Chemistry Guidelines: Rivision 3," EPRI TR-105714 (1995)
  9. Right Angle Industries, "Radwaste Desk Reference; Volume 3, Part 1: Processing Liquid Waste," EPRI NP-7386-V3P1 (1994)
  10. Kunin R, McGarvey FX, Ind. Eng. Chem. Eng. Proc. Dev., 43, 734 (1951)
  11. Cohen P, "Water Coolant Technology of Power Reactors," American Nuclear Society (1980)
  12. Helfferich F, "Ion Exchange," McGraw-Hill Co., New York (1962)
  13. Kataoka T, Muto A, Nishiki T, J. Chem. Eng. Jpn., 27(3), 375 (1994)