화학공학소재연구정보센터
Chemical Engineering Journal, Vol.245, 201-209, 2014
Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions
Polyacrylonitrile (PAN) nanofibers functionalized with amine groups (PAN-NH2) were prepared using a simple one-step reaction route. The PAN-NH2 nanofibers were investigated for the removal of chromium(VI) from aqueous solutions. The adsorption and the kinetic characteristics were evaluated in batch process. The adsorption process showed pH dependence and the maximum Cr(VI) adsorption occurred at pH = 2. The Langmuir adsorption model described well the experimental adsorption data and estimated a maximum loading capacity of 156 mg/g, which is a markedly high value compared to other adsorbents reported. The kinetics studies indicated that the equilibrium was attained after 90 min and the experimental data followed a pseudo-second order model suggesting a chemisorption process as the rate limiting step. X-ray Photoelectron Spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) revealed that the adsorption of Cr(VI) species on PAN-NH2 was facilitated through both electrostatic attraction and surface complexation. High desorption efficiency (> 90%) of Cr(VI) was achieved using diluted base solutions that may allow the reuse of PAN-NH2 nanofibers. (C) 2014 Elsevier B.V. All rights reserved.