화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.6, 1105-1114, December, 1996
높은 산소과전압과 내구성의 이사놔납전극 제조에 관한 연구
A Study on the Preparation of Lead Dioxide Electrode with High Oxygen Overvoltage and Durability
초록
α-PbO2/IrO2-TiO2/Ti지지체상에 sodium lauryl sulfate 및 TiO2분말을 첨가한 질산납 전해액에서 전착한 β-PbO2층의 특성 및 성능을 XRD, SEM, cyclic voltammograms, 매크로전해를 이용하여 검토하였다. XRD분석결과 sodium lauryl sulfate 및 TiO2 분말의 존재하에 α-PbO2/IrO2-TiO2/Ti 지지체 위에 전착한 β-PbO2층은 순수한 β-PbO2층과 마찬가지로 정방정계구조를 나타냈다. SEM결과 sodium lauryl sulfate는 전착층의 결정입자크기를 작게 하는 경향을 보여준다. sodium lauryl sulfate 및 TiO2분말의 존재하에 전착한 β-PbO2전극은 KOH 및 HClO4지지전해질에서 양극산화에 대한 산소과전압과 내구성을 크게 향상시켰다. 티타늄마드래스에 전착시킨 β-PbO2전극을 이용하여 과염소산용액으로부터 오존 발생에 대한 전극성능과 내구성을 검토하였다. HClO4지지전해질에 sodium lauryl sulfate와 TiO2분말을 첨가하여 α-PbO2/IrO2-TiO2/Ti 마드래스상에 전착한 β-PbO2 전극이 가장 높은 전류효율과 내구성을 가짐을 확인하였다.
The characteristic and performance of β-PbO2 layer electrodeposited on α-PbO2/IrO2-TiO2/Ti substrate by adding sodium lauryl sulfate and TiO2 powder in lead nitrate solution were investigated by using XRD, SEM, cyclic voltammograms, and macro-elctrolysis. Results of XRD analysis ascertain that β-PbO2 layers electrodeposited in the presence of sodium lauryl sulfate and TiO2, powder on α-PbO2/IrO2-TiO2/Ti substrate have the same tetragonal structure as pure β-PbO2 layers. The SEM results show that sodium lauryl sulfate tend to diminish crystal size of the deposited layer. The β-PbO2 electrode electrodeposited in the presence of sodium lauryl sulfate and TiO2 powder gives significantly improved oxygen overvoltage and durability for anodic oxidation in KOH and HC1O4 supporting electrolyte. Electrode performance and durability for the evolution of ozone in perchloric acid solution have been investigated by using β-PbO2 electrodes electrodeposited on Titanium madrasgR. It was ascertained that the PbO2 electrode electrodeposited on α-PbO2/IrO2-TiO2/Ti madrasmadrasgR by adding sodium lauryl sulfate and TiO2 powder in HC1O4 supporting electrolyte had the highest current efficiency and durability.
  1. Pavid BL, Brink DR, "Ozone in Water Treatment; Application and Engineering," Lewis Publishers, London (1991)
  2. Tabata N, "High Power Density Ozonier," 3rd Int. Symp. on Ozone Technology, Paris (1977)
  3. Trasatti S, "Electrodes of Conductive Metallic Oxides," Chap. 4, 11, 217, 628, Elsevier Sci., Pub., Amsterdam, Oxford. NY (1981)
  4. Steckhan E, "Topics in Current Chemistry," Chap. 1, 13, Springer-Veriag, New York, Tronto (1987)
  5. Chang H, Johnson DC, J. Electrochem. Soc., 136, 17 (1989) 
  6. Carr JP, Hampson WA, Chem. Rev., 72, 682 (1972)
  7. Weinberg NL, Weinberg HR, Chem. Rev., 68, 449 (1968) 
  8. Bard AJ, Faulkner LR, "Electrochemical Method," Chap. 8, 291, John Wiley & Sons, New York, Tronto (1980)
  9. Gabe DR, "Principle of Metal Surface Treatment and Protection," 2nd ed., 66, Pergamon Press, Ins., Elmsford., NY (1978)
  10. Foller PC, Grodwin ML, Ozone Sci. Eng., 6, 29 (1984)