화학공학소재연구정보센터
Applied Surface Science, Vol.305, 62-66, 2014
Hematite nanostructuring using electrohydrodynamic lithography
Tailoring hematite thin film nanostructure is particularly interesting since this oxide's function is closely related to its structure, for example when implemented as a photoanode in water splitting solar cells. In this study, electrohydrodynamic destabilization was designed to grow hematite nanodroplets with morphologies controlled by a master electrode. A polymer/iron salt film was destabilized by electrohydrodynamic destabilization and the resulting structures were pyrolysed to achieve crystalline a-Fe203 nanodroplets of 30 nm height and 70 nm radius. NEXAFS spectroscopy proved that the structures contain ferrihydrite, which is converted into hematite during pyrolysis, while the polymer was decomposed. Homogeneous nanoparticle precipitation in the bulk of the polymer, due to encapsulation of the iron precursor in the polymer matrix, is accounted for the good preservation of the structures. This study represents the first step towards the use of electrohydrodynamic destabilization for nanostructuring of hematite thin films, with a control over the feature size. (C) 2014 Elsevier B.V. All rights reserved.