화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.3, 433-442, June, 1996
Poly(ethylene oxide)-Li계 고분자 저해질의 전기화학적 특성 및 물리적 성질
Electrochemical Characteristics and Physical Properties of Poly(ethylene oxide)-Li based Polymer Electrolyte
초록
분자량이 큰 Poly(ethylene oxide)[PEO] 고분자에 LiC1O4, LiCF3SO3 등의 리튬염과 ethylene carbonate(EC), propylene carbonate(PC) 등의 가소제를 고정화시킨 고분자 전해질의 전기화학적 특성 및 물리적 성질을 조사하였다. 가소제가 첨가된 PEO-Li계 고분자 전해질은 상온에서 10-4 S/cm의 이온 전도도를 보였고 4.5 V(vs. Li/Li)까지 높은 전기화학적인 안정성을 나타냄으로써 리튬 2차전지에 적용 가능한 것으로 나타났다. 리튬염 및 가소제의 첨가에 따라 PEO의 결정상이 감소되었고 특히 LiC1O4, PC등이 LiCF3SO3, EC 등에 비하여 더 효과적인 것으로 나타났다. 리튬염의 농도가 증가할수록 고분자 전해질의 유리전이온도(Tg)는 증가되었으며 반면에 융점온도(Tm는 감소하는 것으로 나타났다. 가소제가 첨가된 고분자 전해질은 6℃에서 결정화 되었다.
Electrochemical characteristics and physical properties of polymer electrolyte which immobilized lithium salts such as LiC1O4 and LiCF3SO3 and plasticizers such as ethylene carbonate(EC) and propylene carbonate(PC) in high molecular weight poly(ethylene oxide) [PEO] polymer was investigated. PEO-Li based polymer electrolyte with plasticizers showed ionic conductivity of 10-4 S/cm at room temperature and high electrochemical stability up to 4.5 V(vs. LlLi), so it can be applied to lithium secondary battery. The crystallinity of PEO decreased with the addition of lithium salts and plasticizers, especially LiC1O4 and PC showed more effective than and LiCF3SO3and EC. Glass transition temperature(Tg) of polymer electrolyte increased with increasing lithium salt concentration whereas melting temperature (Tm) decreased. Polymer electrolyte with plasticizers crystallized at 6℃.
  1. Scrosati B, J. Electrochem. Soc., 139, 2776 (1992) 
  2. Koksbang R, J. Power Sources, 32, 175 (1990)
  3. Gray FM, Solid State Ion., 40-41, 637 (1990) 
  4. Armand MB, Chabagno JM, Duchot M, "Second International Meeting on Solid Electrolyte," 20-22, St. Andrews, Scotland (1978)
  5. Andrei M, Marchese L, Roggero A, Passerini S, Scrosati B, "Second International Symposium on Polymer Electrolyte, ed. B. Scrosati, 119, Elsevier Applied Science," Barking, UK (1990)
  6. Koto Y, Solid State Ion., 40-41, 632 (1990) 
  7. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P, Solid State Ion., 11, 91 (1983) 
  8. Armand MB, "Polymer Electrolyte Review," ed. J.R. MacCallum and C.A. Vincent, 1, 2, Elsevier Applied Science, London (1987)
  9. MacCallum JR, Vincent CA, "Polymer Electrolyte Review," ed. J.R. MacCallum and C.A. Vincent, 1, 23, Elsevier Applied Science, London (1988)
  10. Vincent CA, "Electrochemical Science and Technology of Polymers," ed. R.G. linford 2, Elsevier Applied Science, London (1988)
  11. Watanabe M, Ikeda J, Shinoraha I, Polym. J., 15, 65 (1983) 
  12. Cameron GG, Harvie JL, Ingram MD, Sorrie GA, Br. Polym. J., 20, 199 (1988)
  13. Kim HS, Cho BW, Kim JT, Yun KS, Chun HS, J. Power Sources, accepted (1996)
  14. Yang L, Solid State Ion., 40-41, 616 (1990) 
  15. Pelad E, "Lithium Batteries," ed. J.P. Gabano, Academic Press, London (1983)