화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.2, 261-268, April, 1996
수소제조를 위한 메탄올의 수증기 개질반응
Steam Reforming of Methanol for the Production of Hydrogen
초록
Copper 담지량을 0∼50wt% 범위에서 달리한 Cu/SiO2 촉매를 kneading법으로 제조하였다. 이 촉매들을 400∼900℃에서 소성하였고 반응전에 수소분위기하에서 150∼300℃에서 환원하였다. 메탄올의 수증기 개질반응을 반응온도; 200∼400℃, 수증기/메탄올 몰비; 0.4∼1.6, 그리고 접촉시간(W/F); 3∼25g.-cat.hr./mol 범위에서 수행하였다. 촉매의 특성은 IR, BET와 XRD를 사용하여 조사하였다. 촉매의 precursor로 copper nitrate를 사용할때 촉매제조시의 pH가 촉매의 활성에 큰 영향을 미쳤으나 pH, 소성온도 및 환원온도는 생성물분포에 영향을 미치지 않았다. 최적담지량, 소성온도 및 환원온도는 각각 40wt%, 700℃ 그리고 300℃였다 수소생성을 위한 최적반응온도는 275℃였고 수소의 양과 질을 저하하는 메탄의 생성은 이 온도까지 억제되었다. Cu/SiO2 촉매계에서 반응활성종은 Cu°-Cu2O임을 추정할 수 있었다.
Various Cu/SiO2 catalysts with copper concentration ranging from 0 to 50wt% were prepared by kneading method for the steam reforming of methanol. These catalysts were calcined at temperatures in the range of 400℃ ∼ 900℃ and then reduced in a H2 atmosphere in the range of 150℃ ∼350℃. Steam reforming of methanol was carried out at atmospheric pressure over a temperature range of 200℃ ∼400'℃ steam/methanol molar ratio of 0.4 ∼ 1.6 and W/F of 3 ∼ 25 g.-cat.hr./mol. Characterization of the catalysts was studied using IR, BET and XRD. Using copper nitrate as a precursor for catalysts, pH in the preparation of catalysts had a great effect on the catalytic activity, but pH in the preparation of catalysts, calcination temperature, and reducing temperature in H2 atmosphere had no effect on the product distribution. Optimum copper concentration, calcination temperature and reducing temperature were 40wt%, 700℃ and 300℃, respective)y. Reaction temperature for maximum H2 production was 275℃, and the formation of methane which lowered quantity and quality of H2 would be inhibited below 275℃. Cu°-Cu2O might be active species in Cu/SiO2 catalyst.
  1. Kho YT, Rho YW, Chem. Ind. Technol., 13(1), 70 (1995)
  2. Kobayashi H, Takezawa N, Minochi C, Chem. Lett., 1347 (1976) 
  3. Kobayashi H, Takezawa N, Minochi C, Takahashi K, Chem. Lett., 1197 (1980) 
  4. Amphlett JC, Evans M, Jones RA, Weir RD, Can. J. Chem. Eng., 720 (1981)
  5. Shimokawabe M, Takezawa N, Kobayashi H, Appl. Catal., 2, 379 (1982) 
  6. Kohler MA, Lee JC, Trimm DL, Cart NW, Appl. Catal., 31, 309 (1987) 
  7. Idem RO, Bakhshi NN, Ind. Eng. Chem. Res., 33(9), 2047 (1994) 
  8. Idem RO, Bakhshi NN, Ind. Eng. Chem. Res., 33(9), 2056 (1994) 
  9. Kobayashi H, Takezawa N, Minochi C, J. Catal., 69, 487 (1981) 
  10. Iwasa N, Masuda S, Ogawa N, Takezawa N, Appl. Catal. A: Gen., 125(1), 145 (1995) 
  11. Suh JK, Ha BH, Jeong SY, Koh JC, Lee JM, Microporous Mater., 3, 657 (1995)