화학공학소재연구정보센터
Clean Technology, Vol.20, No.1, 88-94, March, 2014
Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test
E-mail:
초록
경유는 연료전지 시스템의 연료원으로써 주목받고 있는 탄화수소 액체연료 중 하나로, 연료개질 촉매와 연료전지의 전극재료를 피독시키는 황화합물을 포함하고 있어 탈황공정이 필요한 것으로 여겨지고 있다. 다양하고도 대안적인 탈황기술이 연구되고 있으나, 초저유황 경유의 탈황 연구는 여전히 부진한 실정이다. 본 연구는 용융탄산염 연료전지 시스템에 응용될 수 있는 원료인 상용초저유황 경유의 탈황에 관한 것이다. 여기서 초저유황의 흡착탈황을 위한 흡착제로 활성탄, 제올라이트, 금속산화물 계 상용흡착제 후보군이 선정되었고 유망한 탈황제를 찾기 위한 스크리닝 평가를 실시하였다. 그 결과 초저유황 경유의 황농도를 0.1 ppmw 수준까지 떨어뜨리기 위한 흡착제 종류로 금속산화물계가 매우 유용하며, 활성탄과 제올라이트 흡착제는 같은 실험조건에서 해당 수준의 황 농도에 이르지 못하는 것으로 나타났다.
During the past decades much attention has been paid to the desulfurization of diesel oil which is important as a source for the fuel cells to prevent the sulfur poisoning of both diesel steam reforming catalyst and electrode of fuel cell. Although alternative desulfurization techniques have been investigated, desulfurization for ultra-low sulfur diesel (ULSD) is still challenged. Therefore, this research focuses on the desulfurization of commercial ULSD for the application to molten carbonate fuel cell (MCFC). Herein, the performances of several kinds of commercial adsorbents based on activated carbons, zeolites, and metal oxides for desulfurization of ULSD were screened. The results showed that metal oxides based materials can feasibly reduce sulfur concentration in ULSD to a level of 0.1 ppmw while activated carbons and zeolites did not reach this level at current conditions.
  1. Ma XL, Velu S, Kim JH, Song CS, Appl. Catal. B: Environ., 56(1-2), 137 (2005)
  2. Sammes N (Editor), Fuel Cell Technology-Reaching Towards Commercialization, Springer, London, pp. 167 (2006)
  3. Avadikyan A, Cohendet P, Heraud AJ, The Economic Dynamics of Fuel Cell Technologies, Springer, Berlin, pp. 23-42 (2003)
  4. Seredych M, Lison J, Jans U, Bandosz TJ, Carbon, 47, 2491 (2009)
  5. Wang YH, Yang RT, Langmuir, 23(7), 3825 (2007)
  6. Marin-Rosas C, Ramirez-Verduzco LF, Murrieta-Guevara FR, Hernandez-Tapia G, Rodriguez-Otal LM, Ind. Eng. Chem. Res., 49(9), 4372 (2010)
  7. Jeon HJ, Ko CH, Kim SH, Kim JN, Energy Fuels, 23, 2537 (2009)
  8. Hernandez-Maldonado AJ, Yang RT, J. Am. Chem. Soc., 126(4), 992 (2004)
  9. Hernandez-Maldonado AJ, Yang RT, Ind. Eng. Chem. Res., 43(4), 1081 (2004)
  10. Hernandez-Maldonado AJ, Yang RT, Ind. Eng. Chem. Res., 42(1), 123 (2003)
  11. Gong YJ, Dou T, Kang SJ, Li Q, Hu YF, Fuel Process. Technol., 90(1), 122 (2009)
  12. Khan NA, Jhung SH, “Low-temperature Loading of Cu+ Species over Porous Metal-organic Frameworks (MOFs) and Adsorptive Desulfurization with Cu+-loaded MOFs,” J. Hazard. Mater., 237-238, 180-185 (2012)
  13. Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD, Energy Fuels, 26(8), 4953 (2012)
  14. Shi F, Hammoud M, Thompson LT, Appl. Catal. B, 103, 161 (2011)
  15. Subhan F, Liu BS, Chem. Eng. J., 178, 69 (2011)
  16. Shahadat Hussain AHM, Tatarchuk BJ, Fuel, 107, 465 (2013)
  17. Wang L, Chen Y, Du L, Li S, Cai H, Liu W, Fuel, 105, 353 (2013)
  18. Bu J, Loh G, Gwie CG, Dewiyanti S, Tasrif M, Borgna A, Chem. Eng. J., 166(1), 207 (2011)
  19. Xu B, Bordiga S, Prins R, van Bokhoven JA, Chem. Eng. J., 333, 245 (2007)
  20. Ma X, Sprague M, Song C, Ind. Eng. Chem. Res., 44, 5678 (2005)
  21. Song CS, Catal. Today, 86(1-4), 211 (2003)