화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.2, 240-246, April, 2014
황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 2. 분리 미생물들을 접종한 담체를 충전한 바이오필터 운전
Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 2. Performance of Biofilter Packed with Media Inoculated with a Consortium of Separated Microbes
E-mail:
초록
황화수소와 암모니아를 포함한 악취폐가스를 처리하기 위하여 여러 semi-pilot 바이오필터 운전 조건 하에서 Bacillus cereus DAH-1056과 Arthrobacter sp. KDE-0311를 고정한 semi-pilot 바이오필터 시스템을 운전하였다. Semi-pilot 바이오필터 운전조건에서 Thiobacillus sp. IW와 반송슬러지를 고정한 바이오필터의 황화수소 removal efficiency는 약 80%이었고 암모니아의 removal efficiency는 약 50% 정도이었던 반면에 Bacillus cereus DAH-1056과 Arthrobacter sp. KDE-0311를 고정한 본 연구에서 황화수소의 removal efficiency는 약 90%이었고 암모니아의 removal efficiency는 약 60% 정도이었다. 따라서 본 연구에서 Thiobacillus sp. IW와 반송슬러지를 고정한 semi-pilot 바이오필터의 경우를 기준으로 황화수소 및 암모니아의 removal efficiency가 각각 약 13% 및 20% 정도 제고되었다. 또한 본 연구에서는 암모니아의 최대 elimination capacity가 약 35 g/m3/h로서 Thiobacillus sp. IW와 반송슬러지를 고정한 semi-pilot 바이오 필터의 경우보다 3~5 g/m3/h 정도 제고되어 10~17% 더욱 높았다. 한편 본 연구의 황화수소의 최대 elimination capacity는 약 63 g/m3/h 정도로 약 15% 증가하였다. 본 연구에서는 같은 inlet load의 황화수소라 할지라도 높은 농도의 황화수소가 낮은 농도의 황화수소보다 바이오필터의 암모니아 처리를 더 어렵게 하거나, 같은 inlet load의 암모니아라 할지라도 낮은 농도의 암모니아의 경우가 높은 농도의 암모니아보다 더 큰 removal efficiency와 elimination capacity를 갖는 것이 관찰되었다. 본 연구에서의 황화수소 최대처리용량은 황화수소와 암모니아를 동시처리 하였음에도 불구하고 황화수소만을 바이오필터로 처리한 선행연구에서의 황화수소 최대처리용량을 초과하거나 비슷하였다. 또한 본 연구에서는 바이오필터로 황화수소와 암모니아를 동시처리한 선행연구보다 더 높은 암모니아 제거용량을 보였다.
A semi-pilot biofilter inoculated with the microbes consortium of Bacillus cereus DAH-1056 and Arthrobacter sp. KDE-0311 was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter inoculated with Thiobacillus sp. IW and return-sludge, the removal efficiencies of hydrogen sulfide and ammonia were ca. 80% and ca. 50%, respectively. On the other hand, in this study, the removal efficiencies of hydrogen sulfide and ammonia were ca. 90% and ca. 60%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and ammonia were enhanced by ca. 13% and 20%, respectively, compared to the semipilot biofilter inoculated with Thiobacillus sp. IW and return-sludge. In addition, in this study, the maximum elimination capacities of hydrogen sulfide and ammonia were enhanced by ca. 15% (8 g/m3/h) and 10~17% (3~5 g/m3/h), respectively. In this study, it was observed either that in case of even a same inlet load of hydrogen sulfide, a higher concen-tration of hydrogen sulfide causes more difficulties in treating ammonia containing in waste air than a lower one, or that in case of even a same inlet load of ammonia, a lower concentration of ammonia results in higher removal efficienciy and elimination capacity than a higher one. Even though hydrogen sulfide and ammonia were treated simultaneously by a biofilter in this study, the maximum elimination capacity of hydrogen sulfide in this study exceeded or was similar to that in previous study of biofilter treating only hydrogen sulfide. In addition, this study showed the higher maximum elimination capacity of ammonia than other previous investigation of biofilter treating hydrogen sulfide and ammonia simultaneously.
  1. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334 (1990)
  2. Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D, Chem. Eng. J., 113(2-3), 93 (2005)
  3. Islander RI, Devinny JS, Mansfield F, Postyn A, Shin H, J. Environ Eng., 117, 751 (1990)
  4. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39(2), 165 (2003)
  5. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25 (2000)
  6. Wani AH, Branion MR, Lau AK, J. Hazard. Mater., 60, 287 (1998)
  7. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773 (1996)
  8. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31 (1996)
  9. Chung YC, Huang C, Tseng CP, Chemosphere, 43, 1043 (2001)
  10. Chung YC, Huang C, Tseng CP, Pan JR, Chemosphere, 41, 329 (2000)
  11. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101 (2002)
  12. Shareefdeen Z, Herner B, Webb D, Verhaeghe L, Wilson S, Chem. Eng. J., 113(2-3), 215 (2005)
  13. Lebrero R, Gondim AC, Perez R, Garcia-Encina PA, Munoz R, Water Res., 49, 339 (2014)
  14. Pantoja JLR, Sader LT, Damianovic MHRZ, Foresti E, Silva EL, Chem. Eng. J., 158(3), 441 (2010)
  15. Kim JH, Rene ER, Park HS, Bioresour. Technol., 99(3), 583 (2008)
  16. Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636 (2013)
  17. Gonzalez-Matute R, Rinker DL, Bioresour. Technol., 97(14), 1679 (2006)
  18. Kim KY, Choi HL, J. Anim. Sci. & Technol., 43, 1005 (2001)
  19. Kuroda K, Osada T, Yonaga M, Kanematu A, Nitta T, Mouri S, Kojima T, Bioresour. Technol., 56(2-3), 265 (1996)
  20. Akdeniz N, Janni KA, Salnikov IA, Bioresour. Technol., 102(8), 4974 (2011)
  21. Malhautier L, Gracian C, Roux JC, Fanlo JL, Cloirec PL, Chemosphere, 50, 145 (2003)
  22. Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382 (2010)
  23. Chen YX, Yin J, Wang KX, Chemosphere, 58, 1023 (2005)
  24. Lee EJ, Park H, Lim KH, Korean Chem. Eng. Res., 51(5), 568 (2013)
  25. Lim KH, Jung YJ, Park LS, Min KS, Korean Chem. Eng. Res., 39, 600 (2001)
  26. Lim DJ, Lim KH, Korean Chem. Eng. Res., 47(6), 788 (2009)
  27. Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(2), 272 (2013)
  28. Lim KH, Park SW, Korean J. Chem. Eng., 23(6), 965 (2006)
  29. Lee EJ, Park SW, Nam DV, Chung CH, Lim KH, Korean Chem. Eng. Res., 48(3), 391 (2010)