화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.2, 214-218, April, 2014
표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석
Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports
E-mail:
초록
본 연구에서는 용매열합성법(solvothermal method)을 이용하여 매크로 기공의 알루미나 튜브 지지체 위에 나노기공 Cu3(BTC)2 분리막을 제조하였다. In-situ 용매열합성법을 이용하는 경우, 매크로 기공의 알루미나 지지체 위에 균일한 핵생성과 성장을 통해 연속적이고 균열이 없는 Cu3(BTC)2 층을 형성하기 어렵다. 본 연구에서는 용매열합성 전에 알루미나 지지체 표면을 200 ℃로 가열한 상태에서 Cu 전구체 용액을 분무하여 지지체 표면을 개질한 후, 용매열합성법을 수행하여 연속적이고 균열이 없는 Cu3(BTC)2 튜브형 분리막을 제조할 수 있었다. 합성된 Cu3(BTC)2 분리막은 XRD, FE-SEM 및 기체투과 실험 등을 통해 분석하였다. 5 μm의 두께를 가진 Cu3(BTC)2 튜브형 분리막을 통한 단일기체 투과실험 결과, 80 oC에서 H2가 가지는 투과도는 7.8×10^(-7)mol/s·m2·Pa이고, H2/N2, H2/CO2의 이상선택도는 각각 11.94, 12.82로 계산되었다.
In this study, nanoporous Cu3(BTC)2 membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free Cu3(BTC)2 layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free Cu3(BTC)2 tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at 200 ℃. The prepared Cu3(BTC)2 tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. H2 permeance through 5 μm thick Cu3(BTC)2 tubular membrane was calculated to be 7.8×10^(-7) mol/s·m2·Pa by single gas permeation test, with the ideal selectivities of H2/N2=11.94, and H2/CO2=12.82.
  1. Jee KY, Lee YT, Korean Chem. Eng. Res., 51(5), 580 (2013)
  2. Chen YW, Xiangli FJ, Jin WQ, Xu NP, J. Membr. Sci., 302(1-2), 78 (2007)
  3. Lee L, Park SJ, Kim S, Korean Chem. Eng. Res., 49(6), 758 (2011)
  4. Pakizeh M, Moghadam AN, Omidkhah MR, Namvar-Mahboub M, Korean J. Chem. Eng., 30(3), 751 (2013)
  5. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM, Nature, 402, 276 (1999)
  6. Rowsell JLC, Millward AR, Park KS, Yaghi OM, J. Am. Chem. Soc., 126(18), 5666 (2004)
  7. Li JR, Kuppler RJ, Zhou HC, Chem. Soc. Rev., 38, 1477 (2009)
  8. Zou XQ, Zhu GS, Hewitt IJ, Sun FX, Qiu SL, “Synthesis of a Metal-organic Framework Film by Direct Conversion Technique for VOCs Sensing,” Dalton Trans., 3009-3013 (2009)
  9. Cho SH, Ma BQ, Nguyen ST, Hupp JT, Albrecht- Schmitt TE, “A Metal-organic Framework Material That Functions as an Enantioselective Catalyst for Olefin Epoxidation,” Chem. Commun., 2563-2565 (2006)
  10. Ma LQ, Abney C, Lin WB, Chem. Soc. Rev., 38, 1248 (2009)
  11. Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK, Ind. Eng. Chem. Res., 51(5), 2179 (2012)
  12. Gascon J, Aguado S, Kepteijn F, Microp. Mesop. Mater., 113, 132 (2008)
  13. Guo HL, Zhu GS, Hewitt IJ, Qiu SL, J. Am. Chem. Soc., 131(5), 1646 (2009)
  14. Guerrero VV, Yoo Y, McCarthy MC, Jeong HK, J. Mater. Chem., 20, 3938 (2010)
  15. Noh SJ, Kwon HT, Kim J, J. Nanosci. Nanotechnol., 13, 5671 (2013)
  16. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID, Science, 283(5405), 1148 (1999)