화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.3, 412-418, March, 2014
Reactor sizing for butane steam reforming over Ni and Ru catalysts
E-mail:
We obtained kinetics data on steam reforming of butane and calculated the appropriate reactor size based on the kinetics data. Using commercial Ni and Ru catalysts, steam reforming reactions of butane were performed while changing the reaction temperature and partial pressure of reactants. After comparing the power law model and the Langmuir-Hinshelwood model by using the kinetics data obtained from the experiment, it is revealed that the reaction rate could be determined by both models in the reforming reaction of butane over commercial Ni and Ru catalysts. Also, calculation of the steam reforming reactor size using a PRO/II simulation with a kinetic model equation showed that the reactor size using the Ni catalyst is smaller than that with the Ru catalyst to obtain the same conversion.
  1. Ren T, Daniels B, Patel MK, Blok K, Resour. Conserv. Recycl., 53, 653 (2009)
  2. Ren T, Patel MK, Resour. Conserv. Recycl., 53, 513 (2009)
  3. Park CH, Kim KS, Jun JW, Cho SY, Lee YK, J. Korean Ind. Eng. Chem., 20(2), 186 (2009)
  4. Vizcaino AJ, Carrero A, Calles JA, Int. J. Hydrog. Energy, 32, 1450 (2007)
  5. Christensen TS, Appl. Catal. A: Gen., 138(2), 285 (1996)
  6. Graf PO, Mojet BL, van Ommen JG, Lefferts L, Appl. Catal. A: Gen., 332(2), 310 (2007)
  7. Huang ZY, Xu CH, Liu CQ, Xiao HW, Chen J, Zhang YX, Lei YC, Korean J. Chem. Eng., 30(3), 587 (2013)
  8. Kuchonthara P, Puttasawat B, Piumsomboon P, Mekasut L, Vitidsant T, Korean J. Chem. Eng., 29(11), 1525 (2012)
  9. Sperle T, Chen D, Lodeng R, Holmen A, Appl. Catal. A: Gen., 282(1-2), 195 (2005)
  10. Schadel BT, Duisberg M, Deutschmann O, Catal. Today, 142, 42 (2009)
  11. Jeong JH, Lee JW, Seo DJ, Seo Y, Yoon WL, Lee DK, Kim DH, Appl. Catal. A: Gen., 302(2), 151 (2006)
  12. Profeti LPR, Ticianelli EA, Assaf EM, Fuel, 87(10-11), 2076 (2008)
  13. Hou KH, Hughes R, Chem. Eng. J., 82(1-3), 311 (2001)
  14. Maluf SS, Assaf EM, Fuel, 88(9), 1547 (2009)
  15. Leventa M, Gunn DJ, El-Bousi MA, Int. J. Hydrog. Energy, 28, 945 (2003)
  16. Choudhary VR, Mondal KC, Appl. Energy, 83(9), 1024 (2006)
  17. Aboosadi ZA, Rahimpour MR, Jahanmiri A, Int. J. Hydrog. Energy, 36, 2960 (2011)
  18. Zeppieri M, Villa PL, Verdone N, Scarsella M, De Filippis P, Appl. Catal. A: Gen., 387(1-2), 147 (2010)
  19. Lee WH, Master Dissertation, Kongju National University, Gongju, Korea (2011)
  20. Zhan Y, Li D, Nishida K, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 356(2), 231 (2009)
  21. Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Clay Sci., 43, 49 (2009)
  22. Chon H, Seo G, Introduction of catalysis, Hanrimwon, Seoul (2002)
  23. Avci AK, Trimm DL, Aksoylu AE, Onsan ZI, Appl. Catal. A: Gen., 258(2), 235 (2004)
  24. Satterfield CN, Heterogeneous catalysis in industrial practice, McGraw-Hill, Inc., New York (1993)