화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.6, 633-638, December, 2013
비스-디알킬아미노알킬 포스핀산 유도체로 처리된 리기다 소나무 시험편의 연소특성
Combustive Characteristics of Pinus Rigida Specimens Treated with Bis-(dialkylaminoalkyl) Phosphinic Acid Derivatives
E-mail:
초록
이 연구에서는 비스-디메틸아미노메틸 포스핀산, 비스-디에틸아미노메틸 포스핀산, 비스-디부틸아미노메틸 포스핀산을 붓으로 칠한 리기다 소나무의 연소성을 시험하였다. 15 w%의 비스-디알킬아미노알킬 포스폰핀 수용액으로 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 그 결과, 비스-아미노알킬 포스핀산 유도체로 처리한 시험편은 처리하지 않은 시험편에 비하여 그의 연소 억제성을 부분적으로 향상시켰다. 특히 비스-디에틸아미노메틸 포스핀산으로 처리한 시험편은 미처리 시험편에 비해 각각 낮은 총열방출률(60.9 MJ/m2)과 낮은 유효연소열(15.20 MJ/kg)을 나타내었다. 따라서 비스-디알킬아미노알킬 포스핀산 유도체로 처리한 시험편은 순수 리기다 소나무 시험편에 비하여 부분적으로 낮은 연소성질을 나타내었다.
This study was performed to test the combustive properties of pinus rigida specimens treated with bis-(dimethylaminomethyl) phosphinic acid, bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid. Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying the treated specimens, combustive properties were examined by the cone calorimeter (ISO 5660-1). Combustion-retardation properties were found to be improved partially due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin pinus rigida. In particular, the specimens treated with DEDAP showed both the lower total heat release rate (60.9 MJ/m2) and effective heat of combustion (15.20 MJ/kg) than those of virgin plates. Compared with virgin pinus rigida plates, specimens treated with the bis-dialkylamimoalkyl phosphinic acid derivatives showed partially low combustive properties.
  1. Baysal E, Altinok M, Colak M, Ozaki SK, Toker H, Bioresour. Technol., 98(5), 1101 (2007)
  2. Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stab., 64, 529 (1999)
  3. Chung YJ, J. Ind. Eng. Chem., 16(1), 15 (2010)
  4. Article 43 of Building Code, Article 61 of Enforcement Ordinance, the Internal Finish Material of the Building (2004)
  5. Article 12 of Fire fighting Basic Law, Article 20 of Decree, the Subject Merchandise Flame and Flame Performance Standard (2005)
  6. Lee PW, Kwon JH, Mogjae-Gonghak., 11, 16 (1983)
  7. Mcknight TS, The hygroscopicity of Wood Treated with Fire-retarding Compounds, Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962)
  8. Middleton JC, Dragoner SM, Winters FT, Fore. Prod. J., 15, 463 (1965)
  9. Goldstein IS, Dreher WA, Froe. Prod. J., 11, 235 (1961)
  10. Kozlowski R, Hewig M, 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995)
  11. Stevens R, Daan SE, Bezemer R, Kranenbarg A, Polym. Degrad. Stab., 91, 832 (2006)
  12. Chung YJ, Kim Y, Kim S, J. Ind. Eng. Chem., 15(6), 888 (2009)
  13. Chung YJ, J. Korean Ind. Eng. Chem., 18(3), 251 (2007)
  14. Hardy ML, Polym. Degrad. Stab., 64, 545 (1999)
  15. Tanaka Y, Epoxy Resin chemistry and Technology, Marcel Dekker, New York (1988)
  16. Babrauskas V, New Technology to reduce Fire Losses and Costs, eds. Grayson SJ, Smith DA, Elsevier Appied Science Publisher, London, UK (1986)
  17. Hirschler MM, Thermal decomposition and chemical composition, 239, ACS Symposium Series, 797 (2001)
  18. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1 : Heat Release Rate (Cone Calorimeter Method), Genever (2002)
  19. Lee CH, Lee CW, Kim JW, Suh CK, Kim KM, Korean Patent., Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus-nitrogen compounds, Korean Patent, 2011-0034978 (2011)
  20. Hwang HS, Park I, Lee IK, Choi WJ, Lee SI, Lee JY, Appl. Chem. Eng., 23(4), 383 (2012)
  21. Cischem Com, Flame Retardants, Chischem. Com. CO., Ltd (2009)
  22. Simpso WT, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, 1, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987)
  23. Spearpoint MJ, Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter Using an Intergral Model, 30. NIST GCR 99-775, U.S.A. (1999)
  24. Pearce FM, Khanna YP, Raucher D, Thermal Analysis in Polymer Flammability, Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A. (1981)
  25. DeHaan JD, Kirks’s Fire Investigation, Fifth Edition, 84, Prentice Hall, New Jersey, U.S.A. (2002)
  26. Babrauskas V, Fire Mater., doi: 1002/fam.810080206., 8, 81 (1984)
  27. Babrauskas V, Grayson SJ, Heat Release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK (1992)
  28. Risholm-Sundman M, Lundgren M, Vestin E, Herder P, Holz als Roh-und Werkstoff., 56, 125 (1998)
  29. Babrauskas V, Heat Release Rate, Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008)
  30. Giraud S, Bourbigot S, Rochery M, Vroman I, Tighzert L, Delobel R, Poutch F, Polym.Dgred.Stab., 88, 106 (205)
  31. Choi JM, Mokchae Konghak., 39, 244 (2011)
  32. Delichatsios M, Paroz B, Bhargava A, Fire Safety J., 38, 219 (2003)
  33. Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)
  34. Hagen M, Hereid J, Delichtsios MA, Zhang J, Bakirtzis D, Fire Safety J., 44, 1053 (2009)
  35. Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998)