화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.6, 777-783, November, 2013
실리카 나노입자 표면에 결합된 아미노기와 Glycidyl Methacrylate의 반응에 관한 분광학적 연구
Spectroscopic Studies on the Reaction between Amino Groups on Silica Nanoparticle Surface and Glycidyl Methacrylate
E-mail:
초록
본 연구에서는 실리카 나노입자를 dipodal 형태의 bis[3-(trimethoxysilyl)propyl]amine(BTMA) 실란 커플링제로 실리카 표면을 개질한 후, glycidyl methacrylate(GMA)로 표면 처리를 하여 실리카에 결합된 BTMA의 N-H기와 GMA의 epoxide기의 개환 반응에 의하여 실리카 표면에 중합용 methacrylate기를 도입하는 연구를 수행하였다. 반응시간, 반응온도 및 투입하는 GMA의 농도 변화가 BTMA의 N-H기와 GMA의 epoxide기 사이의 반응에 미치는 영향을 Fourier transform infrared spectroscopy(FTIR), elemental analysis(EA) 및 고체상태 13C cross-polarization magic angle spinning(CP/MAS), nuclear magnetic resonance spectroscopy(NMR)법을 사용하여 분석하였다. BTMA로 개질된 실리카를 GMA로 처리하면 실리카 입자에 결합되어 있는 BTMA의 N-H기와 GMA의 epoxide기가 열리면서 상호 반응이 일어났으며, 실험한 조건에서는 반응시간, 반응온도 및 투입하는 GMA 농도가 증가할수록 실리카 표면에 도입되는 methacrylate기가 증가함을 확인하였다.
We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These grafted N-H groups were reacted with glycidyl methacrylate (GMA) to introduce polymerizable methacrylate groups on the silica surface. After modification reaction, we used several analytical techniques such as Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to analyze the effects of reaction time, reaction temperature and used GMA concentration on the modification degree between N-H groups on the silica surface and epoxide groups of GMA. We found increased introduction of methacrylate groups on the silica surface by ring opening reaction of epoxide groups of GMA with N-H groups on BTMA treated silica with increased reaction time, reaction temperature and used GMA concentration within our experimental conditions.
  1. Son M, Han S, Han D, Kim Y, Lim J, Kim I, Ha CS, Polym. Bull., 60(5), 713 (2008)
  2. Yu BL, Jung DY, Polym. Sci. Tech., 20, 124 (2009)
  3. Amiri A, Oye G, Sjoblom J, Colloid. Surface A., 349, 44 (2009)
  4. Ren H, Qu YX, Zhao SH, Chin. J. Chem. Eng., 14(1), 93 (2006)
  5. Arkles B, Chemtech., 7, 766 (1977)
  6. Sellinger A, Laine RM, Macromolecules, 29(6), 2327 (1996)
  7. Jeon HN, Kim JH, Ha KR, Polym.(Korea), 36(3), 372 (2012)
  8. Halvorson RH, Erickson RL, Davidson CL, Dental Materials., 19, 327 (2005)
  9. Jone Selvamalar CS, Krithiga T, Penlidis A, Nanjundan S, React. Funct. Polym., 56, 89 (2003)
  10. Safa KD, Nasirtabrizi MH, Eur. Polym. J., 41, 2310 (2005)
  11. Rocks J, Rintoul L, Vohwinkel F, George G, Polymer., 45, 6803 (2004)
  12. El hadad AA, Carbonell D, Barranco V, Morales AJ, Casal B, Galvan JC, Colloid Polym. Sci., 289, 1875 (2011)
  13. Vijayanand PS, Radhakrishnan S, Prasath RA, Nanjundan S, Eur. Polym. J., 38, 1319 (2002)
  14. Han SH, Park KK, Lee SH, Macromol. Res., 16(2), 120 (2008)
  15. Kurth DG, Bein T, J. Phys. Chem., 96, 6707 (1992)
  16. Proctor KG, Markway SJ, Garcia M, Armstrong CA, Gonzales CP, “Diffuse Reflectance FTIR Spectroscopic Study of Base Desorption from Thermally Treated Silica”, in Collodial Silica: Fundamentals and Applications, Bergna HE, Roberts WO, Editors, Taylor & Francis, New York, 385 (2006)
  17. Liu YL, Hsu CY, Wang ML, Chen HS, Nanotechnology., 14, 814 (2003)
  18. Xue G, Ishida H, Koenig JL, Macromol. Mater. Eng., 140, 127 (1986)
  19. Rosniza H, Bakar MA, Hamid SA, Ismail J, Indo. J.Chem., 7, 111 (2007)
  20. Kim BH, Piao F, Lee EJ, Kim JS, Jun YM, Lee BM, Bull. Korean Chem. Soc., 25, 881 (2004)
  21. Espinosa MH, del Toro PJO, Silva DZ, Polymer, 42(8), 3393 (2001)
  22. Metroke T, Wang Y, Wim J, Ooij V, Schaefer DW, J. Sol. Sci. Tech., 51, 23 (2009)
  23. Essington ME, Soil and Water Chemistry: An Intergrative Approach, Taylor & Francis, New York, 170 (2004)
  24. Lawrence SA, Amines: Synthesis, Properties and Application, Cambridge University Press, Cambridge, 231 (2004)