화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.6, 717-721, November, 2013
초음파와 동결/융해에 의한 실크/PVA 하이드로젤의 제조 및 특성 평가
Fabrication and Characterization of Silk/PVA Hydrogels by Sonication and Freezing-Thawing Technique
E-mail:
초록
실크 피브로인과 poly(vinyl alcohol)(PVA)는 뛰어난 생체적합성과 수용성을 가져 생체의학 분야에서 주목하는 재료이다. 본 연구에서는 실크 피브로인과 PVA를 초음파와 동결/융해 방법으로 드레싱제로서 사용 가능한 하이드로젤을 제조하고자 하였다. 실크와 PVA를 100/0, 75/25, 50/50, 25/75, 0/100 비율로 혼합하였다. 제작한 하이드로젤을 FE-SEM, TGA, FTIR, 압축 강도 측정 등을 통해 물성을 분석하였다. 실크/PVA 하이드로젤은 PVA 함량이 증가할수록 공극 크기와 팽윤도는 감소하였으며, 젤의 강도는 증가하였다. PVA를 첨가함으로써 실크의 기계적 물성이 향상되는 것을 확인하였다. 본 연구에서 제조된 실크/PVA 하이드로젤은 드레싱제로서 사용 가능성을 제시하였다.
Biomaterials like silk fibroin (SF) and poly(vinyl alcohol) (PVA) have received increasing attention in biomedical applications because of their attractive properties such as hydrophobicity and biocompatibility. In this study, efficient systems consisting of interpenetrating SF/PVA hydrogels were prepared as potential candidate for wound dressing applications. A simple approach consisting of sonication and a freezing-thawing technique was adopted to fabricate the hydrogels. Different blend ratios consisting of SF (100, 75, 50, 25 and 0%) with respect to the weight of PVA were prepared. The produced hydrogels were characterized for physico-chemical investigations using various states of techniques like; FE-SEM, TGA, FTIR and tensile strength. The addition of PVA to SF was proved to be beneficial in terms of reducing the pore size and swelling ratio of hydrogels. The mechanical property of SF had been increased by addition of PVA. These results show that SF/PVA hydrogels may serve as potential candidates for wound dressing application.
  1. Chen J, Jo S, Park K, Handbook of Biodegradable Polymers, Overseas Publishers Association, Amsterdam (1997)
  2. Peppas NA, Bures P, Leobandung W, Ichikawa H, Eur. J. Pram. Biopharm., 50, 27 (2000)
  3. Park SJ, Kim CH, Tissue Eng. Regen. Med., 4, 471 (2007)
  4. Burczak K, Fujisato T, Hatada M, Ikada Y, Biomaterials., 15, 231 (1994)
  5. Hirai T, Okinaka T, Amemiya Y, Kobayashi K, Hirai M, Hayashi S, Angew. Makromol. Chem., 240, 213 (1996)
  6. Choi EK, Kim HI, Park KR, Nho YC, J. Korean Ind. Eng. Chem., 14(4), 505 (2003)
  7. Park KR, Nho YC, Polym.(Korea), 26(6), 792 (2002)
  8. Zheng Y, Nguyen MK, He C, Huynh CT, Lee DS, Macromol. Res., 18(11), 1096 (2010)
  9. Nguyen MK, Lee DS, Macromol. Res., 18(3), 284 (2010)
  10. Pines E, Rins W, Macromolecules., 6, 888 (1973)
  11. Hassan CM, Ward JH, Peppas NA, Polymer, 41(18), 6729 (2000)
  12. Hennink WE, van Nostrum CF, Adv. Drug Deliv. Rev., 54, 13 (2002)
  13. Khang G, Kim MS,,Min BH, Tissue Eng. Regen. Med., 3, 376 (2006)
  14. Ueno IC, Kweon HY, Park YH, Hudson S, Int. J. Biol.Macromol., 29, 91 (2001)
  15. Minoura N, Tsukada M, Nagura M, Polymer., 31, 265 (1990)
  16. Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y, Biochem. Biophys. Res. Commun., 208, 511 (1995)
  17. Santin M, Motta A, Freddi G, Cannas M, J. Biomed. Mater.Res., 46, 382 (1999)
  18. Ayub ZH, Arai M, Hirabayashi K, Polymer, 35(10), 2197 (1994)
  19. Ayub ZH, Arai M, Hirabayashi K, Biosci. Biotechnol.Biochem., 57, 1910 (1993)
  20. Chao PH, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G, J. Biomed. Mater. Res. B. Appl. Biomater., 95, 84 (2010)
  21. Numata K, Yamazaki S, Naga N, Biomacromolecules, 13(5), 1383 (2012)
  22. Choi EK, Kim HI, Park KR, Nho YC, J. Korean Ind. Eng. Chem., 14(4), 505 (2003)
  23. Hu XA, Lu QA, Sun L, Cebe P, Wang XQ, Zhang XH, Kaplan DL, Biomacromolecules, 11(11), 3178 (2010)
  24. Jamnongkan T, Kaewpirom S, J. Polym. Environ., 18, 413 (2010)
  25. Bryant SJ, Davis-Arehart KA, Luo N, Shoemaker RK, Arthur JA, Anseth KS, Macromolecules, 37(18), 6726 (2004)
  26. Vepari C, Kaplan DL, Prog. Polym. Sci., 32, 991 (2007)