화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.10, 1138-1144, October, 2013
Preparation and properties of sulfonated poly(arylene ether sulfone)/hydrophilic oligomer-g-CNT composite membranes for PEMFC
E-mail:
We have synthesized a novel composite membrane composed of hydrophilic oligomer-g-carbon nanotube (CNT) and sulfonated poly(arylene ether sulfone) (sPAES) for proton exchange membrane fuel cell (PEMFC). Hydrophilic oligomer-g-CNT is made by linking sPAES hydrophilic oligomers of either 3 k, 7 k, or 15 k molecular weight to CNTs. Hydrophilic oligomers allow better dispersion of CNTs in the polymer matrix, and the well dispersed CNTs act as a reinforcing agent in the membrane. The sulfonic acid groups on the hydrophilic oligomer-g-CNT form effective water transport channels which can hold more water under low humidity conditions. Therefore, the developed composite membrane shows proton conductivity enhancement of 40% compared to the pristine membrane at 80 °C and 50% relative humidity (RH) condition. Single cell performances and mechanical properties are also improved in the composite membrane. Especially, current density of the composite membrane prepared with 1 wt% hydrophilic oligomer (15 k)-g-CNT shows an 86% increase compared to that of the pristine membrane at 0.6 V, 80 °C, and 50% RH condition.
  1. Larmimie J, Dicks A, Fuel Cell Systems Explained, John Wiley&Sons, Chichester, 2000.
  2. Hakenjos A, Muenter H, Wittstadt U, Hebling C, J. Power Sources, 131(1-2), 213 (2004)
  3. Tuber K, Pocza D, Hebling C, J. Power Sources, 124(2), 403 (2003)
  4. Williams MV, Kunz HR, Fenton JM, J. Power Sources, 135(1-2), 122 (2004)
  5. Savodogo O, J. New Mat. Electrochem. Syst., 1, 47 (1998)
  6. Yu DM, Yoon K, Yoon YJ, Kim TH, Lee JY, Hong YT, Macromol. Chem. Phys., 213, 839 (2012)
  7. Gurau B, Smotkin ES, J. Power Sources, 112(2), 339 (2002)
  8. Li XF, Chen DJ, Xu D, Zhao CJ, Wang Z, Lu H, Na H, J. Membr. Sci., 275(1-2), 134 (2006)
  9. Lim J, Won J, Hong YT, Lee M, Ko CH, Lee S, J. Mater. Chem., 22, 18550 (2012)
  10. Yang HN, Cho SH, Kim WJ, J. Membr. Sci., 421-422, 318 (2012)
  11. Yoon YJ, Kim TH, Yu DM, Hong YT, Int. J. Hydrog. Energy, 37(24), 18981 (2012)
  12. Park JY, Kim TH, Kim HJ, Choi JH, Hong YT, Int. J. Hydrog. Energy, 37(3), 2603 (2012)
  13. Yoon SJ, Choi JH, Hong YT, Lee SY, Macromol. Res., 18(4), 352 (2010)
  14. Wiles KB, Wang F, McGrath JE, J. Polym. Sci. A: Polym. Chem., 43, 172 (2007)
  15. Guhathakurta S, Min K, J. Appl. Polym. Sci., 115(4), 2514 (2010)
  16. Kim W, Kang S, Ah CS, Lee Y, Ha DH, Choi IS, Yun WS, Bull. Korean Chem. Soc., 25, 1301 (2004)
  17. Yu H, Jin Y, Li Z, Peng F, Wang H, J. Solid State Chem., 181, 432 (2008)
  18. Kannan R, Aher PP, Palaniselvam T, Kurungot S, Kharul UK, Pillai VK, J. Phys. Chem., 1, 2109 (2010)
  19. Tamura T, Kawasami H, Nano Lett., 10, 1324 (2010)
  20. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231 (2002)
  21. Sankir ND, Claus RO, Mecham JB, Harrison WL, Appl. Phys. Lett., 87, 241910 (2005)
  22. Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS, J. Power Sources, 178(2), 620 (2008)
  23. Jheng LC, Huang CY, Hsu SLC, Int. J. Hydrog. Energy, 38(3), 1524 (2013)
  24. Shumaila GB, Lakshmi VS, Alam M, Siddiqui AM, Zulfequar M, Husain M, Curr. Appl. Phys., 11, 217 (2010)