화학공학소재연구정보센터
Clean Technology, Vol.19, No.3, 226-232, September, 2013
중발열량 합성가스 생산을 위한 일체형 이중유동층 가스화 기술 연구
The Study of the Integrated Technology of the Dual Fluidized-bed Gasification for Producing Medium Heating Value Syngas
E-mail:
초록
바이오매스 또는 가연성 폐기물로부터 중발열량(2,500-5,000 kcal/Nm3) 합성가스를 생산하기 위한 5 kg/hr 처리규모 일체형 이중유동층 가스화기를 제작하고 가스화 온도, 원료 투입량, 수증기/원료 무게비(S/F) 등의 운전조건이 가스화기의 거동에 미치는 영향을 조사하였다. 가스화 온도와 원료 공급량이 증가할수록 발생되는 합성가스 중 H2와 CO 농도, 합성가스 유량, 냉가스 효율은 증가하였다. 반면에 수증기/원료 무게비가 실험범위 내에서 증가할수록 발생되는 합성가스 중 H2와 CO 농도, 합성가스 유량, 냉가스 효율은 감소하였다. 원료가 목분인 경우 H2 농도 41%, CO 농도 32%, 냉가스 효율 70.1%, 합성가스 저위발열량 3,428 kcal/Nm3이 가능하였다. 원료가 음식폐기물인 경우 H2 농도 37%, CO 농도 23.9%, 냉가스 효율 66.7%, 합성가스 저위 발열량 3,670 kcal/Nm3이 가능하였다.
A 5 kg/hr scale integral dual fluidized-bed gasifier for producing medium heating value syngas from biomass or combustible wastes was manufactured. The effect of operating variables including gasification temperature, rate of feeding, and weight ratio of steam/feed on the behavior of the gasifier was investigated. The contents of H2 and CO in syngas, flow rate of feeding, cold gas efficiency increased with the increased gasification temperature or rate of feeding, but decreased with the increased weight ratio of steam/feed within the experimental range. With wood powder as the feed, the concentrations of H2 and CO in the syngas were as high as 41% and 32%, and the cold gas efficiency and lower heating value of the syngas were as high as 70.1% and 3,428 kcal/Nm3. With food wastes as the feed, the concentrations of H2 and CO in the syngas were as high as 37% and 23.9%, and the cold gas efficiency and lower heating value of the syngas were as high as 66.7% and 3,670 kcal/Nm3.
  1. van der Meijden CM, Veringa HJ, Vreugdenhil BJ, van der Drift B, Int. J. Chem. React. Eng., 7(1), A53 (2009)
  2. van der Meijden CM, Bergman PCA, van der Drift A, Vreugdenhil BJ, “Prepartions for a 10 MWth Bio-CHP Demonstration based on the Milena Gasification Technology,” 18th European Biomass Conference and Exhibition, May 3-7, Lyon, France (2010)
  3. Toonssen R, Woudstra N, Verkooijen AHM, Int. J. Hydro. Energy., 33, 4074 (2008)
  4. Karmakar M, Chatterjee PK, Datta AB, Biomass Gasification: Thermo Chemical Fluidized Bed Gasification of Biomass, LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrucken, 3.9 (2011)
  5. Chehbouni A, Chaouki J, Guy C, Klvana D, Ind. Eng. Chem. Res., 33(8), 1889 (1994)
  6. Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Heinemann, Newton, MA, 68 (1991)
  7. Basu P, Combustion and Gasification in Fluidized Beds, Taylor & Francis Group, Boca Raton, 64 (2006)
  8. Shin DH, Kim SS, Kim SK, Lee SJ, Kim, KH, Yoo IS, Park SY, “Development of an Intelligent Wastes Energy Utilization Technology,” Korea Institute of Energy Research, Report No. KIER-B22425 (2012)