화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.3, 478-500, June, 1994
융제법에 의한 육티탄산칼륨 Whisker의 합성
The Synthesis of Potassium Hexatitanate Whisker by the Flux Process
초록
융제법을 이용하여 육티탄산칼륨 wisker를 합성하였다. 바람직한 융제를 설정하기 위해 V2O5, Bi2O3, B2O3, Pb3O4, KCl, K4P2O7, K2WO4 그리고 K2MoO4의 8가지 형태의 융제가 조사되었으며 반응온도와 반응시간, K2CO3에 대한 TiO2의 몰비, K2CO3와 TiO2의 혼합물에 대한 flux의 몰비, 티탄산칼륨 섬유의 합성을 위한 서냉효과 등의 변수들이 결정화에 미치는 바를 조사하였다. 적절한 융제는 K2MoO4 및 K2WO4였으며 이 두 flux를 사용한 적절한 섬유상 결정화 조건은 반응온도 1000∼1100℃, 반응시간 5hr, 시료 K2CO3에 대한 TiO2의 혼합물에 대한 융제의 몰비는 4.0 그리고 K2CO3에 대한 TiO2의 몰비는 6.0이 가장 바람직하였으며 아울러 서냉조작은 장섬유의 성장에 효과적이었다.
The preparation of potassium hexatitanate whisker by flux method was investigated. In this study, 8 types synthesis of flux such as V2O5, Bi2O3, B2O3, Pb3O4, KCl, K4P2O7, K2WO4 and K2MoO4 were tested to find a suitable flux for the synthesis of potassium hexatitanate whisker. Effects of various reaction variables such as reaction temperature, time, TiO2 mole ratio to K2CO3, flux mole ratio to the mixture of K2CO3 and TiO2, and slow-cooling treatment on the crystallization of potassium hexatitanate whisker were investigated. K2MoO4 and K2WO4 were better flux than others tested for the synthesis of potassium hexatitanate. In the presence of K2MoO4 or K2WO4 flux, the optimum condition for the synthesis of potassium hexatitanate whisker was that reaction temperature of 1000∼1100℃, reaction time of 5 hours, TiO2 mole ratio to K2CO3 of 6.0, and flux mole ratio to mixture (K2O+nTiO2) of 4.0. Slow-cooling treatment showed good effect on the growth of long fibrous potassium hexatitanate.
  1. Fujiki Y, Mitsuhashi T, セラミフクス, 19, 200 (1984)
  2. Buchner W, Schiebs R, Winter G, Buchel KH, "Industrial Inorganic Chemistry," VCH Pub., N.Y. (1989)
  3. Noll W, Wilmanns Encyclopedia der Techischer Chemic 4th Ed., 8, Verlag Chemic, Weinheim-Decrfield Beach-Basel (1974)
  4. Muto F, Nakagome T, Take S, Yogyo-Kyokai-Shi, 86, 443 (1978)
  5. Ohta N, Fujiki Y, Yogyo-Kyokai-Shi, 89, 134 (1981)
  6. Shimizu T, Yogyo-Kyokai-Shi, 85, 567 (1977)
  7. Shimizu T, Yogyo-Kyogai-Shi, 83, 305 (1975)
  8. Easteal AJ, J. Inorg. Nucl. Chem., 35, 3956 (1973) 
  9. Fujiki Y, Ohta N, Yogyo-Kyogai-Shi, 88, 112 (1980)
  10. Lee CT, Choi US, Kim YM, J. Korean Ind. Eng. Chem., 5(1), 160 (1994)
  11. Shimizu T, Yanagida H, Hashimoto K, Nishikawa Y, Yogyo-Kyokai-Shi, 88, 9 (1980)
  12. Gulledge HC, Ind. Eng. Chem., 152, 117 (1960) 
  13. Easteal AJ, J. Mater. Sci., 8, 1171 (1973) 
  14. Kajiwara M, J. Mater. Sci., 22, 1223 (1987) 
  15. Fujiki Y, Izumi F, Yogyo-Kyokai-Shi, 84, 155 (1977)
  16. Sholokhovich ML, Bakova IM, Zhur. Obshchei. Khim., 26, 1268 (1956)
  17. Mokhosoev MV, Kuleshov IM, Fedorov PI, Zhur. Neorgan. Khim., 7, 1628 (1962)
  18. Gulledge HC, Ind. Eng. Chem., 152, 117 (1960)