화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.9, 965-970, September, 2013
Wear behavior of in situ polymerized carbon nanotube/ultra high molecular weight polyethylene composites
E-mail:
A carbon nanotube (CNT)/ultra high molecular weight polyethylene (UHMWPE) composite has been prepared through in situ polymerization of ethylene using Ti-based Ziegler-Natta catalysts fixed on the surface of CNT. The in situ polymerization of ethylene produced CNTs regularly encapsulated with UHMWPE, which showed very uniform dispersion of CNTs in the UHMWPE matrix after direct molding. In tensile and ring-on-block wear tests, the in situ polymerized composites showed mechanical and wear properties superior to mechanically blended composites. In particular, the polymerized composite displayed a remarkable suppression of abrasive wear, which was the wear mechanism observed in unfilled UHMWPE and mechanically blended composites; the in situ polymerized composite containing about 10 wt% of CNT had an approximately 2.5 times lower wear rate than unfilled UHMWPE. Moreover, the polymerized composite showed higher thermal conductivity with CNT content when compared to the blended composites, which suggests an easier transfer of heat generated during a severe wear operation.
  1. Treacy MM, Ebbesen TW, Gibson JM, Nature, 381(6584), 678 (1996)
  2. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH, Nature, 423, 703 (2003)
  3. Xiao JR, Gillespie JW, Polym. Eng. Sci., 46(8), 1051 (2006)
  4. Gong X, Liu J, Baskaran S, Voise RD, Young JS, Chem. Mater., 12, 1049 (2000)
  5. Vaisman L, Wagner HD, Marom G, Adv. Colloid Interface Sci., 128-130, 37 (2006)
  6. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC, Science, 282, 95 (1998)
  7. Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL, J. Phys. Chem. B, 103(21), 4318 (1999)
  8. Pekker S, Salvetat JP, Jakab E, Bonard JM, Forro L, J. Phys. Chem. B, 105(33), 7938 (2001)
  9. Hamon MA, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis ME, Haddon RC, Chem. Phys. Lett., 347(1-3), 8 (2001)
  10. Dyke CA, Tour JM, Chem. Eur. J., 10, 812 (2004)
  11. Jin YH, Park HJ, Im SS, Kwak SY, Kwak S, Macromol. Rapid Commun., 23(2), 135 (2002)
  12. Novokshonova LA, Meshkova IN, J. Polym. Sci., 36, 517 (1994)
  13. Park HJ, Kwak SY, Kwak S, Macromol. Chem. Phys., 206, 945 (2005)
  14. Kwak S, Park HJ, Kim J, Jin YH, J. Korean Ind. Eng. Chem., 15(2), 232 (2004)
  15. Srivastava D, Brenner DW, Schall JD, Ausman KD, Yu MF, Ruoff RS, J. Phys. Chem. B, 103(21), 4330 (1999)
  16. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC, Acc. Chem. Res., 35, 1105 (2002)
  17. Blake R, Gun'ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ, J. Am. Chem. Soc., 126(33), 10226 (2004)
  18. Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P, J. Phys. Chem. B, 108(50), 19361 (2004)
  19. Boehm HP, Carbon, 32, 759 (1994)
  20. Delhaes P, Couzi M, Trinquecoste M, Dentzer J, Hamidou H, Vix-Guterl C, Carbon, 44, 3005 (2006)
  21. Belin T, Epron F, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 119, 105 (2005)
  22. Czichos H, in Friction and Wear of Polymer Composites, Friedrich K, Ed., Elsevier, Amsterdam, 1986, p 1.
  23. Berber S, Kwon YK, Tomanek D, Phys. Rev. Lett., 84, 4613 (2000)
  24. Kim P, Shi L, Majumdar A, McEuen PL, Phys. Rev. Lett., 87, 215502 (2001)
  25. Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ, Phys. Rev. B, 66, 165440 (2002)
  26. Biercuk MJ, Liaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE, Appl. Phys. Lett., 80, 2767 (2002)
  27. Wu F, He X, Zeng Y, Cheng HM, Appl. Phys. A-Mater. Sci. Process., 85, 25 (2006)