화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.4, No.2, 373-380, June, 1993
알칼리형 연료전지용 수소극의 촉매 특성과 조촉매의 영향
Characteristics of Catalyst and Influence of Promoter for Hydrogen Electrode in Alkaline Fuel Cell
초록
알칼리형 연료전지의 수소극 촉매로 사용되는 Raney 니켈의 제조방법과 조촉매 첨가에 따른 전극특성을 전기화학적 방법을 통하여 고찰하였다. Raney 니켈은 소결온도를 700℃로 하고 니켈 대 알루미늄의 함량비를 중량비 60:40으로 하여 제조한 것이 전극성능이 우수하였다. 조촉매로 티타늄을 첨가하면 촉매활성과 전극특성이 증가함을 알았으며 특히 2w/o의 티타늄이 첨가된 전극이 2.4A/g의 가장 우수한 질량활성을 갖고 있었고 이때의 촉매의 평균 입자크기는 5.8㎛였다. 임피던스법에 의해 전극반응의 거동을 평가하였으며 티타늄이 2w/o 첨가된 전극에서의 저항값과 capacity를 측정한 결과 0.3Ω㎝2 and 0.42F/㎝2을 나타내었다.
The preparation method of Raney nickel catalyst and the effect of promotor for the hydrogen electrode in alkaline fuel cell were investigated with electrochemical methods. The best electrode performance was observed with the Raney nickel which was obtained at 700℃ of sintering temperature and 60:40 of nickel:aluminum. As titanium was added for promotor, the activity of catalyst and characteristic of electrode was improved. Especially, the electrode containing 2w/o of titanium showed the maximum mass activity of 2.4A/g and its mean particle size was 5.7㎛. The resistance and capacitance of the electrode containing 2w/o of titanium, measured with AC impedance spectroscopy, were calculated to the 0.3Ω㎝2 and 0.42F/㎝2, respectively.
  1. Adams AA, Bacon FT, Watson RGH, "Fuel Cells," W. Mitchell, Jr., Academic Press, NY (1963)
  2. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," Von Nostrand Reinhold, NY (1989)
  3. Appleby AJ, Conway BE, Bockris JOM, "Electrocatalysis in Modern Aspects of Electrochemistry," Vol. 9, p. 369 (1974)
  4. Ewe H, Justi EW, Selbach HJ, Energy Conv. Manag., 24, 97 (1984) 
  5. Mund K, Richter G, vonStrum F, J. Electrochem. Soc., 124, 1 (1977) 
  6. Adams VW, J. Power Sources, 37, 181 (1992) 
  7. Rohland B, Niysch J, Wendt H, J. Power Sources, 37, 271 (1992) 
  8. Post RE, NASA Tech. Note TN-D-8341 (1977)
  9. Zegers P, J. Power Sources, 29, 133 (1990) 
  10. Yeo RS, J. Electrochem. Soc., 133(3), 533 (1983) 
  11. Strasser K, Ber. Bunsenges. Phys. Chem., 94, 1000 (1990)
  12. Prater K, J. Power Sources, 29, 239 (1990) 
  13. Orchard JP, Tomsett A, Ypung D, J. Catal., 84, 189 (1983) 
  14. Levy RB, Boudart M, Science, 181, 547 (1973) 
  15. Freel J, Pietres WJM, Abderson RB, J. Catal., 16, 281 (1970) 
  16. Despic AR, Diaz DM, Petrovic CB, Vujcic VL, J. Electrochem. Soc., 111, 1109 (1964)
  17. Kenjo T, Bull. Chem. Soc. Jpn., 54, 2553 (1981) 
  18. Staples AB, Benforado DM, J. Korean Ind. Eng. Chem., 3(2), 189 (1992)
  19. Lee HK, Lee JS, J. Korean Ind. Eng. Chem., 3(2), 230 (1992)
  20. Chung PJ, J. Korean Ind. Eng. Chem., 3(3), 471 (1992)
  21. Murray JL, Bennett LH, Baker H, "Binary Alloy Phase Diagram," American Society for Metals, Vol. 1, p. 142 (1986)
  22. Sane S, Bonnier JM, Damon JP, Masson J, Appl. Catal., 9, 69 (1984)