화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.4, No.2, 273-283, June, 1993
전착 이산화납전극의 제조 및 특성에 관한 연구
A Study on the Preparation and Characteristics of Electrodeposited Lead Dioxide Electrodes
초록
티타늄마드래스 소지에 PbO2,를 전착하는 과정에서 전해액에 여러 가지 산과 유기물질의 첨가는 PbO2전착층의 물성에 큰 영향을 준다. XRD결과 β-PbO2가 산성 전해액에서 전착되는 것을 확인하였다. 본 실험에서 사용된 첨가제 중 전해액에 sodium lauryl sulfate를 첨가할때 산소과전압이 가장 높은 PbO2가 전착되었으며 polyethylene glycol을 첨가할때는 염소과전압이 가장 낮은 PbO2가 전착되었다. PbO2의 산소과전압과 염소과전압은 PbO2를 전착하는 동안 행하는 교반에 크게 의존한다. SEM결과 전착하는 동안 교반하지 않고 전착한 PbO2결정이 교반하여 전착한 PbO2보다 더욱 크다는 것을 관찰하였다. 또한 산성전해액에서 PbO2를 전착할 경우, PbO2결정 크기가 클수록 산소과전압은 커지며 PbO2결정 크기가 작을수록 염소과전압은 낮아졌다. HClO4의 존재하에서 PbO2를 전착할 경우 560g/ℓ Pb(NO3)2, 65∼70℃, pH>1에서 최적의 전착전류효율을 나타내었다.
Addition of various acids or organic compounds to she electrolyte solution during the electrodeposition of PbO2 on titanium madras substrate strongly affected performance of the deposited PbO2 layer. Results of X-ray diffractometry ascertained that β-PbO2 was deposited in acidic electrolyte. Among additives used in this experiment, PbO2 with a high oxygen overvoltage was electrodeposited when sodium lauryl sulfate was added, and PbO2 with a lower chlorine overvoltage was electrodeposited when polyethylene glycol was added to the electrolyte solution. The oxygen and chlorine overvoltage of PbO2 was strongly dependent on the stirring provided during the electrodeposition experiment. It was observed by the SEM results that the PbO2 grains deposited when stirring was not provided during the electrodeposition have larger than PbO2 grains deposited by stirring. In the PbO2 deposition under acidic electrolyte, the oxygen overvoltage increased with larger PbO2 grains and the chlorine overvoltage decreased with smaller PbO2 grains. The optimal current efficiency of PbO2 in the presence of perchloric acid was observed at Pb(NO3)2 560g/ℓ, 65∼70℃, and pH>1.
  1. Bear H, U.S. Patent, 3,711,385 (1973)
  2. Beer H, U.S. Patent, 3,622,498 (1972)
  3. Jones P, Lind R, Wynne-Jones WFK, Trans. Faraday Soc., 50, 972 (1954) 
  4. Conway BE, Bai L, Electrochim. Acta, 31, 1013 (1986) 
  5. Watanabe A, Sekimoto M, Denkikagaku, 10, 819 (1988)
  6. Trasatti S, "Electrodes of Conductive Metallic Oxides," Elsevier Sci. Pub., Amsterdam, Part. B, Chap. 10, p. 591 (1981)
  7. Hampel CA, "Encyclopedia of Electrochemistry," Reinhold, New York, p. 762 (1964)
  8. Fukasawa A, Japan Kokai JP 52-19230[77/19230], p. 4, Feb. 14 (1977)
  9. MacInnes DA, "The Principle of Electrochemistry," Chap. 3, p. 47 (1961)
  10. Wen TC, Wei MG, J. Electrochem. Soc., 137, 2700 (1990)