화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.2, 201-207, April, 2013
페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향
Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon
E-mail:
초록
본 연구에서는 전기이중층 커패시터의 전극 활물질로 사용되는 페놀계 활성탄소의 비 정전용량의 증가를 위하여 붕산을 이용하여 표면처리를 수행하였다. 또한, 붕산 처리가 전기화학 특성에 미치는 영향에 대하여 고찰하였다. 활성탄소의 붕산 처리는 활성탄소의 표면에 전기화학적 특성 향상에 도움이 되는 퀴논형 관능기(O=C)의 비율을 효과적으로 증가시켰으며, 비표면적과 총 기공 부피 및 미세공 부피를 증가시켰다. 최적의 조건으로 붕산 처리된 활성탄소는 미처리 활성탄소에 비해 비 정전용량이 약 20% 증가하였다. 이러한 결과로부터 활성탄소의 붕산 처리는 활성탄소의 비 정전 용량을 효과적으로 증가시킬 수 있다고 사료된다.
In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.
  1. Wei L, Yushin G, Carbon., 49, 4830 (2011)
  2. Simon P, Gogotsi Y, Nat. Mater., 7, 845 (2008)
  3. Yoon S, Lee JW, Hyeon T, Oh SM, J. Electrochem. Soc., 147(7), 2507 (2000)
  4. Li Q, Liu F, Zhang L, Nelson BJ, Zhang S, Ma C, Tao X, Cheng J, Zhang X, J. Power Sources., 207, 199 (2012)
  5. Sun JK, Um EH, Lee CT, Appl. Chem. Eng., 21(1), 11 (2010)
  6. Lee CT, Kim JH, Cho BW, Prospect. Ind. Chem., 2(1), 16 (1999)
  7. Arico AS, Bruce P, Tarascon JM, Van-Schalkwijk W, Nature Mater., 4, 366 (2005)
  8. Zheng JP, Cygan PJ, Jow TR, J. Electrochem. Soc., 142(8), 2699 (1995)
  9. Yamada A, Goodenough JB, J. Electrochem. Soc., 145(3), 737 (1998)
  10. Stadniychuk HP, Anderson MA, Chapman TW, J. Electrochem. Soc., 143(5), 1629 (1996)
  11. Rudge A, Davey J, Raistrick I, Gottesfeld S, J. Power Sources., 47, 89 (1994)
  12. Belanger D, Ren XM, Davey J, Uribe F, Gottesfeld S, J. Electrochem. Soc., 147(8), 2923 (2000)
  13. Hu CC, Chu CH, Mater. Chem. Phys., 65(3), 329 (2000)
  14. Huh JH, Seo MK, Kim HY, Kim IJ, Park SJ, Polym.(Korea), 36(6), 756 (2012)
  15. Yamada Y, Sasaki T, Tatsuda N, Weingarth D, Yan K, Kotz R, Electrochim. Acta., 81, 138 (2012)
  16. Huh JH, Seo MK, Kim HY, Kim IJ, Park SJ, Polym.(Korea), 36(6), 756 (2012)
  17. Fathy NA, El-Sherif IY, Carbon Lett., 12, 1 (2011)
  18. Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, J. Ind. Eng. Chem., 18(1), 116 (2012)
  19. Tashima D, Yoshitama H, Sakoda T, Okazaki A, Kawaji T, Electrochim. Acta., 77, 198 (2012)
  20. Tashima D, Sakamoto A, Taniguchi M, Sakoda T, Otsubo M, Surf. Coat. Technol., 202, 5560 (2008)
  21. Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS, J. Electrochem. Soc., 148(8), A910 (2001)
  22. Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interface Sci., 381, 152 (2012)
  23. Jung MJ, Jeong E, Lee SI, Lee YS, J. Ind. Eng. Chem., 18(2), 642 (2012)
  24. Lee YS, Kim YH, Hong JS, Suh JK, Cho GJ, Catal. Today, 120(3-4), 420 (2007)
  25. Kim J, Hong H, Oh KY, Lee C, J. Korea Vacuum Soc., 11, 159 (2002)
  26. Redlich P, Loeffler J, Ajayan PM, Bill J, Aldinger F, Ruhle M, Chem. Phys. Lett., 260, 465 (1996)
  27. Little TW, Ohuchi FS, Surf. Sci., 445, 235 (2000)
  28. Zhang C, Duan Y, Xing B, Zhan L, Qiao W, Ling L, Mining Science and Technology (China)., 19, 259 (2009)
  29. Jung MJ, Jeong E, Lim JW, Lee SI, Lee YS, Colloid Surf. A-Physicochem. Eng. Asp., 389, 274 (2011)
  30. Khomenko V, Raymundo-Pinero E, Beguin F, J. Power Sources, 195(13), 4234 (2010)
  31. Lang J, Yan X, Liu W, Wang R, Xue Q, J. Power Sources., 204, 220 (2012)
  32. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ, Electrochem. Commun., 10, 1594 (2008)
  33. Morenocastilla C, Ferrogarcia MA, Joly JP, Bautistatoledo I, Carrascomarin F, Riverautrilla J, Langmuir, 11(11), 4386 (1995)
  34. Gregg SJ, Sing KSW, Adsorption Surface Area and Porosity, second ed., Academy Press, London (1982)
  35. Yang KL, Yiacoumi S, Tsouris C, J. Electroanal. Chem., 540, 159 (2003)
  36. Mathur RB, Gupta V, Bahl OP, Tressaud A, Flandrois S, Synth. Met., 114, 197 (2000)
  37. Rarnani M, Haran BS, White RE, Popov BN, J. Electrochem. Soc., 148(4), A374 (2001)
  38. Shen W, Li Z, Liu Y, Recent Patents on Chemical Engineering., 1, 27 (2008)