화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.5, 1051-1057, May, 2013
Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production
E-mail:
Lignocellulosic biomass is an abundant, renewable resource, but the structural and chemical complexity of biomass acts as a hindrance in its effective utilization for cellulosic ethanol production. Hence, effective pretreatment is always necessary to remove the surrounding matrix of lignin prior to the enzymatic hydrolysis. Pretreatment of rice straw by Pleurotus florida was found to be effective and resulted in 49% lignin degradation, whereas fungus along with grape leaves resulted in 99% lignin degradation. This method not only explores a pathway for utilizing the solid agro waste but also results in a value-added product of edible mushrooms that has proved to be the best pretreatment technology for ethanol production. FTIR and SEM analysis confirmed the structural transformation taking place during the pretreatment. The components of grape leaves were also analyzed using GC-MS.
  1. Shiva S, Mohammad FG, Soheil S, African J. Microbiol. Res., 6, 704 (2012)
  2. Yamshita Y, Kurosumi A, Sasaki C, Nakamura Y, J. Biochem.Eng., 42, 314 (2008)
  3. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1 (2002)
  4. Chohnan S, Nakane M, Rahman MH, Nitta Y, Yoshiura T, Ohta H, Kurusu Y, J. Biosci. Bioeng., 111(4), 433 (2011)
  5. Malherbe S, Cloete TE, Environ. Sci. Biotechnol., 1, 105 (2003)
  6. Nutawan Y, Phattayawadee P, Pattranit T, Mohammad NE, Energy Res. J., 1, 26 (2010)
  7. Ghosh P, Singh A, Adv. Appl. Microbiol., 39, 295 (1993)
  8. Chahal PS, Chahal DS, Bioconversion of Waste Materials to Industrial Products, 376 (1999)
  9. Gong CS, Cao NJ, Du J, Tsao GT, Adv. Biochem. Eng. Biotechnol., 65, 207 (1999)
  10. Nakamura Y, Sawada T, Inoue E, J. Chem. Technol. Biotechnol., 76(8), 879 (2001)
  11. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN, Biotechnol. Bioeng., 77(6), 678 (2002)
  12. Wingren A, Soderstrom J, Galbe M, Zacche G, Biotechnol.Progress., 29, 1421 (2004)
  13. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J, Biotechnol. Bioeng., 90(4), 473 (2005)
  14. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T, J. Biotechnol., 103, 273 (2003)
  15. Dashtban M, Schraft H, Qin W, Int. J. Biol. Sci., 5, 578 (2009)
  16. Mendels M, Howlett W, Reese ET, Canadian J. Microbiol., 7, 957 (1961)
  17. Thomas AB, Leonard WA, John LE, Botanical Gazette., 143 (1960)
  18. Stafford CM, J. Biochem., 3, 45 (1960)
  19. Updengroff DM, J. Anal. Biochem., 32, 420 (1969)
  20. Singh RP, Garcha HS, Khanna PK, Indian J. Microbiol., 29, 49 (1989)
  21. Kodali B, Pogaku R, Elec. J. Environ. Agri. Food Chem., 5, 1253 (2006)
  22. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S, Bioresour. Technol., 100(10), 2706 (2009)
  23. Ciannamea EM, Stefani PM, Ruseckaite RA, Bioresour. Technol., 101(2), 818 (2010)
  24. Harinder SO, Praveen VV, Khushal B, Vinod KB, Ramabhau TP, Process Biochem., 45, 1299 (2010)
  25. Hergert HL, Wiley-Interscience., 267 (1971)
  26. George BJ, Frantisek Z, Guido CG, J. Agri. Food Chem., 37, 1382 (1989)
  27. Doshi A, Munot JF, Chakravarti BP, Mushroom J. Tropics., 7, 83 (1987)
  28. Deniz T, Betul D, Fatih D, Ali AD, Husnu CBK, Peter R, J. Biosci., 58, 797 (2003)
  29. Khalil A, Lina A, Yasmin J, De-Yu X, Anal. Methods., 2, 673 (2010)