화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.1, 94-98, January, 2013
The electrochemical behavior of an enzyme biosensor electrode using an oxyfluorinated pitch-based carbon
E-mail:
A glucose sensor electrode was prepared by thermally treating a pitch-based carbon material. Oxyfluorination was used to modify the surface of the prepared carbon to induce the formation of hydrophilic functional groups. A glucose oxidase enzyme was effectively loaded onto the surface of the oxyfluorinated carbon and was more sensitive in glucose sensing because of the effects of the improved interfacial affinity between the electrode and the glucose oxidase. The introduced hydrophilic functional groups were examined using XPS analysis. In current-voltage measurements, a higher current was observed in the samples prepared with a higher oxygen content. In addition, a clear redox peak was observed in the surface modified samples. These results can be attributed to efficient electrical resistance measurement by easy electron transfer during glucose sensing. An efficient glucose sensor electrode was prepared using pitch-based carbon, which has beneficial electrical properties, and oxyfluorination, which improves the surface interface.
  1. Walker PL, Radovic LR, Chemistry and Physics of Carbon, Marcel Dekker, New York (1970)
  2. Kinoshita K, Carbon . Electrochemical and Physicochemical Properties, John Wiley and Sons, New York (1988)
  3. McCreery RL, Electroanalytical Chemistry, Marcel Dekker, New York (1991)
  4. Leon y Leon CA, Radovic LR, Chemistry and Physics of Carbon, Marcel Dekker, New York (1994)
  5. Darder M, Blanco ML, Aranda P, Aznar AJ, Bravo J, Hitzky ER, Chemistry of Materials., 18, 1602 (2006)
  6. Zwirtes de Oliveira IRW, Fernandes SC, Vieira IC, Journal of Pharmaceutical and Biomedical Analysis., 41, 366 (2006)
  7. Mandong G, Yanqing L, Hongxia G, Xiaoqin W, Lifang F, Bioelectrochemistry., 70, 245 (2007)
  8. Joshi PP, Merchant SA, Wang Y, Schmidtke DW, Analytical Chemistry., 77, 3183 (2005)
  9. Pantano P, Morton TH, Kuhr WG, Journal of the American Chemical Society., 113, 1832 (1991)
  10. Yanga X, Huaa L, Gonga H, Tan SN, Analytica Chimica Acta., 478, 67 (2003)
  11. Choi YK, Chung KI, Kim WS, Sung YE, Microchemical Journal., 68, 61 (2001)
  12. Endo M, Journal of Materials Science., 23, 598 (1988)
  13. Huang YL, Young RJ, J. Mater. Sci., 29(15), 4027 (1994)
  14. Paris O, Loidl D, Peterlik H, Carbon., 40, 551 (2002)
  15. Wilson R, Turner APF, Biosensors and Bioelectronics., 7, 165 (1992)
  16. Im JS, Jung MJ, Lee YS, J. Colloid Interface Sci., 339(1), 31 (2009)
  17. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS, J. Ind. Eng. Chem., 15(3), 410 (2009)
  18. Im JS, Park SJ, Lee YS, J. Colloid Interface Sci., 314(1), 32 (2007)
  19. Im JS, Kim JG, Lee YS, Carbon., 47, 2640 (2009)
  20. Im JS, Kim SJ, Kang PH, Lee YS, J. Ind. Eng. Chem., 15(5), 699 (2009)
  21. Im JS, Yun J, Lim YM, Kim HI, Lee YS, Acta Biomaterialia., 6, 102 (2010)
  22. Wu Z, Li J, Timmer D, Lozano K, Bose S, International Journal of Adhesion and Adhesives., 29, 488 (2009)
  23. Yun J, Im JS, Lee YS, Kim HI, European Polymer Journal., 46, 900 (2010)
  24. Yun SM, Kim JW, Jung MJ, Nho YC, Kang PH, Lee YS, Carbon Letters., 8, 292 (2007)
  25. Donnet JB, Carbon., 6, 161 (1968)
  26. Tessmer CH, Vidic RD, Uranowski LJ, Environmental Science and Technology., 31, 1872 (1997)
  27. Murata S, Hosokawa M, Kidena K, Nomura M, Fuel Process. Technol., 67(3), 231 (2000)
  28. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L, Analytical Chemistry., 81, 2378 (2009)
  29. Zhao XJ, Mai ZB, Kang XH, Zou XY, Biosensors and Bioelectronics., 23, 1032 (2008)
  30. Salimi A, Noorbakhsh A, Ghadermarzi M, Sensors and Actuators B: Chemical., 123, 530 (2007)
  31. Wagner JG, Pharmacokinetics for the Pharmaceutical Scientist, Technomic Publishing Company, PA (1993)
  32. Wang J, Chem. Rev., 108(2), 814 (2008)
  33. Cheng L, Dong SJ, J. Electrochem. Soc., 147(2), 606 (2000)