화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.24, No.4, 257-266, December, 2012
Rheological characteristics of poly(ethylene oxide) aqueous solutions under large amplitude oscillatory squeeze flow
E-mail:
We investigated the nonlinear and nonsymmetric responses of viscoelastic fluids under large amplitude oscillatory squeeze (LAOSQ) flow. The nonlinear and nonsymmetric stress response is a unique feature of oscillatory squeeze (OSQ) flow under larger deformation, but has rarely been investigated. The goal of this study is to systematically characterize the responses of viscoelastic fluids at larger deformation under oscillatory squeeze flow and to provide a platform for the analysis of nonsymmetric stress signals. We report a framework for the analysis of nonlinear-and-nonsymmetric stress signals at larger strain amplitude under oscillatory squeeze flow. The storage and loss modulus showed strain thinning behavior as the strain amplitude increases in both oscillatory shear and oscillatory squeeze flow. However the normal stress under LAOSQ was found to be nonsymmetric in both magnitude and shape unlike the shear stress under oscillatory shear flow. In addition the energy dissipation was found to be larger in extension than in compression. This study is expected to provide a platform to understand the nonlinear and nonsymmetric characteristics of complex fluids under LAOSQ flow.
  1. Bell D, Binding DM, Walters K, Rheol. Acta, 46(1), 111 (2006)
  2. Dasgupta BR, Tee SY, Crocker JC, Frisken B, Weitz D, Phys. Rev. E., 65, 51505 (2002)
  3. Debbaut B, Thomas K, J. Non-Newton. Fluid Mech., 124(1-3), 77 (2004)
  4. Engmann J, Servais C, Burbidge AS, J. Non-Newton. Fluid Mech., 132(1-3), 1 (2005)
  5. Ewoldt RH, McKinley GH, Rheol. Acta, 49(2), 213 (2010)
  6. Field JS, Swain MV, PhanThien N, J. Non-Newton. Fluid Mech., 65(2-3), 177 (1996)
  7. Hyun K, Nam JG, Wilhellm M, Ahn KH, Lee SJ, Rheol. Acta, 45(3), 239 (2006)
  8. Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ, Korea-Aust. Rheol. J., 15(2), 97 (2003)
  9. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog.Polym. Sci., 36, 1697 (2011)
  10. Jiang P, See H, Swain M, Phan-Thien N, Rheol.Acta., 42, 118 (2004)
  11. Kim JH, Ahn KH, Lee SJ, Korean J. Chem. Eng., DOI: 10.1007/s11814-011-0277-0. (2012)
  12. Nam JG, Ahn KH, Lee SJ, Hyun K, J. Rheol., 54(6), 1243 (2010)
  13. Nam JG, Hyun K, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., 150(1), 1 (2008)
  14. Ovarlez G, Barral Q, Coussot P, Nature Materials., 9, 115 (2010)
  15. Phan-Thien N, J. Australian Math. Soc., 22(Series B), 22 (1980)
  16. Phan-Thien N, Nasseri S, Bilston LE, Rheol. Acta, 39(4), 409 (2000)
  17. Roe RJ, J. Phys.Chem., 72, 2013 (1968)
  18. See H, Nguyen P, J. Soc. Rheol. Japan., 32, 33 (2004)
  19. Vermant J, Moldenaers P, Mewis J, Ellis M, Garritano R, Rev. Sci.Inst., 68, 4090 (1997)
  20. Vermant J, Walker L, Moldenaers P, Mewis J, J. Non-Newton. Fluid Mech., 79(2-3), 173 (1998)
  21. Walberer JA, McHugh AJ, J. Rheol., 45(1), 187 (2001)
  22. Wilhelm M, Macromol.Mat. Eng., 287, 83 (2002)