화학공학소재연구정보센터
Thin Solid Films, Vol.520, No.2, 891-895, 2011
Study of the jet flow field of vacuum spray process
In this work, we study the velocity and turbulence distribution of the cone nozzle jet flow field into a vacuum chamber under different nozzle diameters and injection pressures. The simulations are carried out with using the software based on the volume of fluid method, the standard k-epsilon turbulence model and pressure implicit with splitting of operator arithmetic. It is found that for injection pressure lower than 10 MPa, the spray penetration increases with the increase of injection pressure. However, for injection pressure higher than 10 MPa, the spray penetration tends to reduce progressively. Moreover, the distribution of velocity and turbulence become worse than that of the spray jets with injection pressure lower than 10 MPa. The potential core, spray penetration and diffusion zone of the spray jet increase with the increase of the nozzle diameter. Furthermore, without considering the solubility of the target polymer materials, acetone solvent shows better jet flow distribution in comparison with that of chloroform and carbon tetrachloride. (C) 2011 Elsevier B.V. All rights reserved.