1 |
Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3 Ding LS, Guo WB, Chen XH Applied Microbiology and Biotechnology, 103(13), 5367, 2019 |
2 |
Dissolved organic matter derived from rape straw pretreated with selenium in soil improves the inhibition of Sclerotinia sclerotiorum growth Jia W, Hu CX, Xu JY, Ming JJ, Zhao YY, Cai MM, Sun XC, Liu XW, Zhao XH Journal of Hazardous Materials, 369, 601, 2019 |
3 |
Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco Zhang YH, Wang XS, Chang XC, Sun MY, Zhang YZ, Li WB, Li YG Biochemical and Biophysical Research Communications, 497(1), 160, 2018 |
4 |
Enzymatic activities and pathogenesis-related genes expression in sunflower inbred lines affected by Sclerotinia sclerotiorum culture filtrate Monazzah M, Enferadi ST, Rabiei Z Journal of Applied Microbiology, 125(1), 227, 2018 |
5 |
Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean Zhang FL, Ruan XL, Wang X, Liu ZH, Hu LZ, Li CW Applied Biochemistry and Biotechnology, 180(8), 1542, 2016 |
6 |
Transaldolase gene Ta167 enhances the biocontrol activity of Clonostachys rosea 67-1 against Sclerotinia sclerotiorum Liu JY, Li SD, Sun MH Biochemical and Biophysical Research Communications, 474(3), 503, 2016 |
7 |
Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum Ziaei M, Motallebi M, Zamani MR, Panjeh NZ Biotechnology Letters, 38(6), 1021, 2016 |
8 |
Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ Biotechnology Letters, 36(10), 2095, 2014 |
9 |
MADS-Box Transcription Factor SsMADS Is Involved in Regulating Growth and Virulence in Sclerotinia sclerotiorum Qu XY, Yu BD, Liu JL, Zhang XH, Li GH, Zhang DJ, Li L, Wang XL, Wang L, Chen JY, Mu WH, Pan HY, Zhang YH International Journal of Molecular Sciences, 15(5), 8049, 2014 |
10 |
The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E Journal of Applied Microbiology, 112(1), 159, 2012 |