1 |
Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage Xu SZ, Wang RZ, Wang LW, Zhu J Energy, 167, 889, 2019 |
2 |
Two-stage cascading desorption cycle for sorption thermal energy storage An GL, Wang LW, Gao J Energy, 174, 1091, 2019 |
3 |
Recent advancements in sorption technology for solar thermal energy storage applications Palomba V, Frazzica A Solar Energy, 192, 69, 2019 |
4 |
Composite "LiCl/MWCNT" as advanced water sorbent for thermal energy storage: Sorption dynamics Grekova AD, Gordeeva LG, Lu ZS, Wang RZ, Aristov YI Solar Energy Materials and Solar Cells, 176, 273, 2018 |
5 |
Investigation on performance of multi-salt composite sorbents for multilevel sorption thermal energy storage Jiang L, Gao J, Wang LW, Wang RZ, Lu YJ, Roskilly AP Applied Energy, 190, 1029, 2017 |
6 |
Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy Zhao YJ, Wang RZ, Li TX, Nomura Y Energy, 113, 739, 2016 |
7 |
Numerical simulation of an open sorption thermal energy storage system using composite sorbents built into a honeycomb structure Liu HZ, Nagano K International Journal of Heat and Mass Transfer, 78, 648, 2014 |
8 |
Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat Liu HZ, Nagano K, Sugiyama D, Togawa J, Nakamura M International Journal of Heat and Mass Transfer, 65, 471, 2013 |
9 |
Thermochemical Energy Storage Kerskes H, Bertsch F, Mette B, Worner A, Schaube F Chemie Ingenieur Technik, 83(11), 2014, 2011 |