1 |
Bimetallic-organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction Meng ZH, Cai SC, Wang R, Tang HL, Song SQ, Tsiakaras P Applied Catalysis B: Environmental, 244, 120, 2019 |
2 |
Flammability reduction in a pressurised water electrolyser based on a thin polymer electrolyte membrane through a Pt-alloy catalytic approach Briguglio N, Siracusano S, Bonura G, Sebastian D, Arico AS Applied Catalysis B: Environmental, 246, 254, 2019 |
3 |
Elucidation of Fe-N-C electrocatalyst active site functionality via in-situ X-ray absorption and operando determination of oxygen reduction reaction kinetics in a PEFC Osmieri L, Ahluwalia RK, Wang XH, Chung HT, Yin X, Kropf AJ, Park AEY, Cullen DA, More KL, Zelenay P, Myers DJ, Neyerlin KC Applied Catalysis B: Environmental, 257, 2019 |
4 |
연료전지용 고분자 전해질 복합막의 최근 발전 동향 비자야레크쉬미 비자야쿠마르, 손태양, 남상용 Applied Chemistry for Engineering, 30(1), 1, 2019 |
5 |
수전해 시스템에 적용 가능한 전해질막 연구 개발 동향 임광섭, 손태양, 김기현, 김정, 남상용 Applied Chemistry for Engineering, 30(4), 389, 2019 |
6 |
Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications Vijayakumar V, Kim KH, Nam SY Applied Chemistry for Engineering, 30(6), 643, 2019 |
7 |
양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향 김준섭, 김준범1 Applied Chemistry for Engineering, 30(6), 687, 2019 |
8 |
Modeling polymer electrolyte fuel cells: A high precision analysis Zhang S, Reimer U, Beale SB, Lehnert W, Stolten D Applied Energy, 233, 1094, 2019 |
9 |
Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells Knorr F, Sanchez DG, Schirmer J, Gazdzicki P, Friedrich KA Applied Energy, 238, 1, 2019 |
10 |
Polytetrafluoroethylene content in standalone microporous layers: Tradeoff between membrane hydration and mass transport losses in polymer electrolyte membrane fuel cells Wong AKC, Ge N, Shrestha P, Liu H, Fahy K, Bazylak A Applied Energy, 240, 549, 2019 |