Skip to main content
Log in

Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Avermectins are 16-membered macrocyclic polyketides with potent antiparasitic activities, produced by Streptomyces avermitilis. Upstream of the avermectin biosynthetic gene cluster, there is the avtAB operon encoding the ABC transporter AvtAB, which is highly homologous to the mammalian multidrug efflux pump P-glycoprotein (Pgp). Inactivation of avtAB had no effect, but increasing the concentration of avtAB mRNA 30–500-fold, using a multi-copy plasmid in S. avermitilis, enhanced avermectin production about two-fold both in the wild-type and in a high-yield producer strain on agar plates. In liquid industrial fermentation medium, the overall productivity of avermectin B1a in the engineered high-yield producer was improved for about 50%, from 3.3 to 4.8 g/l. In liquid YMG medium, moreover, the ratio of intracellular to extracellular accumulation of avermectin B1a was dropped from 6:1 to 4.5:1 in response to multiple copies of avtAB. Additionally, the overexpression of avtAB did not cause any increased expression of the avermectin biosynthetic genes through RT-PCR analysis. We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production inside the cell. This strategy may be useful for enhancing the production of other antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aziz MA, Diallo S, Diop IM, Lariviere M, Porta M (1982) Efficacy and tolerance of ivermectin in human onchocerciasis. Lancet 2:171–173

    Article  CAS  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Ch 15:361–367

    Article  CAS  Google Scholar 

  • Eckford PDW, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109:2989–3011

    Article  CAS  Google Scholar 

  • Gao H, Liu M, Liu J, Dai H, Zhou X, Liu X, Zhuo Y, Zhang W, Zhang L (2009) Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresource Technol 100:4012–4016

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. P Natl Acad Sci USA 100:1541–1546

    Article  CAS  Google Scholar 

  • He Y, Wang Z, Bai L, Liang J, Zhou X, Deng Z (2010) Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces. J Microbiol Biotechnol 20:678–682

    Article  CAS  Google Scholar 

  • Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struc Biol 17:412–418

    Article  CAS  Google Scholar 

  • Ikeda H, Omura S (1997) Avermectin biosynthesis. Chem Rev 97:2591–2610

    Article  CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  Google Scholar 

  • Ikeno S, Yamane Y, Ohishi Y, Kinoshita N, Hamada M, Tsuchiya KS, Hori M (2000) ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain. J Antibiot 53:373–384

    Article  CAS  Google Scholar 

  • Kerr ID, Jones PM, George AM (2010) Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues. FEBS J 277:550–563

    Article  CAS  Google Scholar 

  • Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185:223–228

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (eds) (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK

    Google Scholar 

  • Kitani S, Ikeda H, Sakamoto T, Noguchi S, Nihira T (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotech 82:1089–1096

    Article  CAS  Google Scholar 

  • Li M, Chen Z, Zhang XA, Song YA, Wen Y, Li JL (2010) Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresource Technol 101:9228–9235

    Article  CAS  Google Scholar 

  • Martin JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  CAS  Google Scholar 

  • Ostash I, Rebets Y, Ostash B, Kobylyanskyy A, Myronovskyy M, Nakamura T, Walker S, Fedorenko V (2008) An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch Microbiol 190:105–109

    Article  CAS  Google Scholar 

  • Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor sigma(E) is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    Article  CAS  Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  CAS  Google Scholar 

  • Ullan RV, Liu G, Casqueiro J, Gutierrez S, Banuelos O, Martin JF (2002) The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267:673–683

    Article  CAS  Google Scholar 

  • Yoon YJ, Kim ES, Hwang YS, Choi CY (2004) Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Microbiol Biotech 63:626–634

    Article  CAS  Google Scholar 

  • Zhuo Y, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye BC, Zhang Q, Zhang S, Zhang LX (2010) Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. P Natl Acad Sci USA 107:11250–11254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tobias Kieser for helpful discussions and critical reading of our manuscript. This work received financial supports from the National Nature Science Foundation of China, the Ministry of Science and Technology (973 and 863 Programs), the Ministry of Education, the Shanghai Municipal Council of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linquan Bai.

Additional information

Jingfan Qiu and Ying Zhuo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Zhuo, Y., Zhu, D. et al. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis . Appl Microbiol Biotechnol 92, 337–345 (2011). https://doi.org/10.1007/s00253-011-3439-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3439-4

Keywords

Navigation