Skip to main content
Log in

In Silico Characterization of Alkaline Proteases from Different Species of Aspergillus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A total of 49 protein sequences of alkaline proteases retrieved from GenBank representing different species of Aspergillus have been characterized for various physiochemical properties, homology search, multiple sequence alignment, motif, and super family search and phylogenetic tree construction. The sequence level homology was obtained among different groups of alkaline protease enzymes, viz alkaline serine protease, oryzin, calpain-like protease, serine protease, subtilisin-like alkaline proteases. Multiple sequence alignment of alkaline protease protein sequence of different Aspergillus species revealed a stretch of conserved region for amino acid residues from 69 to 110 and 130–204. The phylogenetic tree constructed indicated several Aspergillus species-specific clusters for alkaline proteases namely Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus. The distributions of ten commonly observed motifs were analyzed among these proteases. Motif 1 with a signature amino acid sequence of 50 amino acids, i.e., ASFSNYGKVVDIFAPGQDILSCWIGSTTATNTISGTSMATPHIVGLSCYL, was uniformly observed in proteases protein sequences indicating its involvement with the structure and enzymatic function. Motif analysis of acidic proteases of Aspergillus and bacterial alkaline proteases has revealed different signature amino acid sequences. The superfamily search for these proteases revealed the presence of subtilases, serine-carboxyl proteinase, calpain large subunit, and thermolysin-like superfamilies with 45 representing the subtilases superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Callis, J. (1995). The Plant Cell, 7, 845–857.

    Article  CAS  Google Scholar 

  2. Callis, J., & Vierstra, R. D. (2000). Current Opinion in Plant Biology, 3, 381–386.

    Article  CAS  Google Scholar 

  3. Gottesman, S. (2003). Annual Review of Cell and Developmental Biology, 19, 565–587.

    Article  CAS  Google Scholar 

  4. Ehrmann, M., & Clausen, T. (2004). Annual Review of Genetics, 38, 709–724.

    Article  CAS  Google Scholar 

  5. Rawlings, N. D., Morton, F. R., & Barrett, A.J. (2007). In Polaina J., & MacCabe A.P. (Ed.), Industrial enzymes structure, function and applications (pp. 161–180). The Netherlands: Springer.

  6. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  7. Boguslawski, G., Shultz, J. L., & Yehle, C. O. (1983). Analytical Biochemistry, 132, 41–49.

    Article  CAS  Google Scholar 

  8. Jellouli, K., Bougatef, A., Manni, L., Agrebi, R., Siala, R., Younes, I., et al. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 939–948.

    Article  CAS  Google Scholar 

  9. Anwar, A., & Mohammed, S. (1998). Bioresource Technology, 64, 139–144.

    Article  Google Scholar 

  10. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  11. Nishihira, J., & Tachikawa, H. (1999). Journal of Theoretical Biology, 196, 513–519.

    Article  CAS  Google Scholar 

  12. Barett, A. J. (1994). Methods in Enzymology, 244, 1–15.

    Article  Google Scholar 

  13. Katz, M. E., Rice, R. N., & Cheetham, B. F. (1994). Gene, 150, 287–292.

    Article  CAS  Google Scholar 

  14. Tatsumi, H., Ogawa, Y., Murakami, S., Ishida, Y., Murakami, K., Masaki, A., et al. (1989). Molecular and General Genetics, 219, 33–38.

    CAS  Google Scholar 

  15. Ekici, O. D., Paetzel, M., & Dalbey, R. E. (2008). Protein Science, 17, 2023–2037.

    Article  CAS  Google Scholar 

  16. Polgár, L. (2005). Cellular and Molecular Life Sciences, 62, 2161–2172.

    Article  Google Scholar 

  17. Tsang, A., Butler, G., Powlowski, J., Panisko, E. A., & Baker, S. E. (2009). Fungal Genetics and Biology, 46, S153–S160.8.

    Article  CAS  Google Scholar 

  18. Schuster, E., Dunn-Coleman, N., Frisvad, J. C., & van Dijck, P. W. (2002). Applied Microbiology and Biotechnology, 59, 426–435.

    Article  CAS  Google Scholar 

  19. de Vries, R. P., & Visser, J. (2001). Microbiology and Molecular Biology Reviews, 65, 497–522.

    Article  Google Scholar 

  20. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  21. Morya, V. K., Dewaker, V., Mecarty, S. D., & Singh, R. (2010). Journal of Computer Science & Systems Biology, 3, 062–069.

    Article  CAS  Google Scholar 

  22. Pel, H. J., de Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., et al. (2007). Nature Biotechnology, 25, 221–231.

    Article  Google Scholar 

  23. Dubey, A. K., Yadav, S., Kumar, M., Singh, V. K., Sarangi, B. K., & Yadav, D. (2010). 2010. Enzyme Research, 2010, 950230.

    Article  Google Scholar 

  24. Yadav, P. K., Singh, V. K., Yadav, S., Yadav, K. D. S., & Yadav, D. (2009). Biochemistry (Moscow), 74(9), 1049–1055.

    Article  CAS  Google Scholar 

  25. Yadav, V., Yadav, D., & Yadav, K. D. S. (2010). Online Journal of Bioinformatics, 11(2), 293–301.

    Google Scholar 

  26. Kyte, J., & Doolittle, R. F. (1982). Journal of Molecular Biology, 157, 105–132.

    Article  CAS  Google Scholar 

  27. Bjellqvist, B., Hughes, G. J., Pasquali, C., Paquet, N., & Ravier, F. (1993). Electrophoresis, 14, 1023–1031.

    Article  CAS  Google Scholar 

  28. Gill, S. C., & von Hippel, P. H. (1989). Analytical Biochemistry, 182, 319–326.

    Article  CAS  Google Scholar 

  29. Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Protein Engineering, 4, 155–161.

    Article  CAS  Google Scholar 

  30. Kumar, S., Tamura, K., & Nei, M. (2004). Briefings in Bioinformatics, 5, 150–163.

    Article  CAS  Google Scholar 

  31. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  32. Ikai, A. (1980). Journal of Biochemistry (Tokyo), 88(6), 1895–1898.

    CAS  Google Scholar 

  33. Rawlings, N. D., Morton, F. R., & Barrett, A. J. (2006). Nucleic Acids Research, 34, D270–D272.

    Article  CAS  Google Scholar 

  34. Rogers, S., Wells, R., & Rechsteiner, M. (1986). Science, 234, 364–368.

    Article  CAS  Google Scholar 

  35. Whisstock, J. C., & Lesk, A. M. (2003). Quarterly Reviews of Biophysics, 36, 307–340.

    Article  CAS  Google Scholar 

  36. Powers, R., Copeland, J. C., Germer, K., Mercier, K. A., Ramanathan, V., & Revesz, P. (2006). ROTEINS: Structure, Function, and Bioinformatics, 65, 124–135.

    Article  CAS  Google Scholar 

  37. Gough, J., Karplus, K., Hughey, R., & Chothia, C. (2001). Journal of Molecular Biology, 313(4), 903–919.

    Article  CAS  Google Scholar 

  38. Wright, C. S., Alden, R. A., & Kraut, J. (1969). Nature, 221, 235–242.

    Article  CAS  Google Scholar 

  39. Carter, P., & Wells, J. A. (1988). Nature, 332, 564–568.

    Article  CAS  Google Scholar 

  40. Wells, J. A., & Estell, D. A. (1988). Trends in Biochemical Sciences, 13, 291–297.

    Article  CAS  Google Scholar 

  41. Rawlings, N. D., & Barrett, A. J. (1993). Biochemical Journal, 290, 205–218.

    CAS  Google Scholar 

  42. de Groot, A., Dulermo, R., Ortet, P., Blanchard, L., Guérin, P., Fernandez, B., et al. (2009). PLoS Genetics, 5(3), e1000434.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Head, Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur for providing the infrastructural facilities. The financial support by UGC, India in the form of UGC- Major Project (F. no.37-133/2009-SR) to Dinesh Yadav and by DST, India in the form of Fast Track Young Scientist Fellowship (FT/LS-125/2008) to Sangeeta Yadav is duly acknowledged. Authors V.K. Morya and Eun-ki Kim are thankful to Inha University for facilitating the required assets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morya, V.K., Yadav, S., Kim, EK. et al. In Silico Characterization of Alkaline Proteases from Different Species of Aspergillus . Appl Biochem Biotechnol 166, 243–257 (2012). https://doi.org/10.1007/s12010-011-9420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9420-y

Keywords

Navigation