Skip to main content
Log in

Characterization of naturally derived macromolecular matrix and its osteogenic activity with preosteoblasts

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The extracellular environment is an architectural support for tissue cells and stem cells, which is very important in cell adhesion, migration and differentiation. In this study, we prepared a self-assembled macromolecular matrix, naming it the preosteoblast-derived matrix (PDM). The primary focus was to characterize PDM in component and structure, and then to evaluate its osteogenic potential as a two-dimensional (2D) microenvironment. Preosteoblasts were cultured on a coverslip and then decellularized using a cocktail solution of detergents and enzymes, leaving a matrix without the cellular components. The surface of the PDM had a fibrillar mesh structure, as imaged by scanning electron microscope (SEM). The compositions of PDM, fibronectin, type I collagen, and laminin were identified using immunofluorescent staining. Adjustment of culture time or cell seeding density produced not only different compositional disparity in quantity, but also showed distinct pattern of macromolecule assembly. F-Actin staining revealed that early cell morphology was quite different as the type of substrates changed. Preosteoblasts were much more elongated on PDM to a certain direction and soft in their adhesion. Cells were proliferating faster in PDM as compared to the coverslip (control) or the gelatin-coated surface. When they were cultured for 2 weeks in three different substrates, von Kossa staining exhibited that calcium deposits were much densely formed over PDM. This result was also quantitatively supported by calcium assay. Measurement of alkaline phosphatase (ALP) activity demonstrated the positive effect of PDM, with higher ALP activity than the other groups. The present study indicates that naturally derived macromolecular matrix is able to carry major protein components as well as a fibrillar structure and that it may provide preosteoblasts with a favorable surface microenvironment for osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. N. Park, J. K. Kim, and H. Suh, Biomaterials, 25, 3689 (2004).

    Article  CAS  Google Scholar 

  2. M. A. Serban, Y. Liu, and G. D. Prestwich, Acta Biomater., 4, 67 (2008).

    Article  CAS  Google Scholar 

  3. N. H. Veilleux, I. V. Yannas, and M. Spector, Tissue Eng., 10, 119 (2004).

    Article  CAS  Google Scholar 

  4. R. S. Bhati, D. P. Mukherjee, K. J. McCarthy, S. H. Rogers, D. F. Smith, and S. W. Shalaby, J. Biomed. Mater. Res., 56, 74 (2001).

    Article  CAS  Google Scholar 

  5. H. Zhang, F. Tasnim, Y. J. Ying, and D. Zink, Biomaterials, 30, 2899 (2009).

    Article  CAS  Google Scholar 

  6. K. Narayanan, K. J. Leck, S. Gao, and A. C. A. Wan, Biomaterials, 30, 4309 (2009).

    Article  CAS  Google Scholar 

  7. N. Datta, Q. P. Pham, U. Sharma, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos, Proc. Natl. Acad. Sci., 130, 2488 (2006).

    Article  Google Scholar 

  8. H. C. Ott, T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor, Nat. Med., 14, 213 (2008).

    Article  CAS  Google Scholar 

  9. B. E. Uygun, A. S. Gutierrez, H. Yagi, M. L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M. L. Yarmush, and K. Uygun, Nat. Med., 16, 814 (2010).

    Article  CAS  Google Scholar 

  10. T. H. Petersen, E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog, and L. E. Niklason, Science, 329, 538 (2010).

    Article  CAS  Google Scholar 

  11. M. D. schofer, P. P. Roessler, J. Schaefer, C. Theisen, S. Schlimme, J. T. Heverhagen, M. Voelker, R. Dersch, S. Agarwal, S. Fuchs-Winkelmann, and J. R. Paletta, PLoS One, 6, e25462 (2011).

    Article  CAS  Google Scholar 

  12. E. Seyedjafari, M. Soleimani, N. Ghaemi, and I. Shabani, Biomacromolecules, 11, 3118 (2010).

    Article  CAS  Google Scholar 

  13. G. Kaur, M. T. Valarmathi, J. D. Potts, E. Jabbari, T. S. Attwood, and Q. Wang, Biomaterials, 31, 1732 (2010).

    Article  CAS  Google Scholar 

  14. Y. Zhang, Y. He, S. Bharadwaj, N. Hammam, K. Carnagey, R. Myers, A. Atala, and M. V. Dyke, Biomaterials, 30, 4021 (2009).

    Article  CAS  Google Scholar 

  15. S. V. Bouroncle, F. Vollner, C. Mohl, K. Kupper, G. Brockhoff, T. E. Reichert, G. Schmalz, and C. Morsczeck, Biochem. Biophys. Res. Commun., 410, 587 (2011).

    Article  Google Scholar 

  16. J. S. Tjia, B. J. Aneskievich, and P. V. Moghe, Biomaterials, 20, 2223 (1999).

    Article  CAS  Google Scholar 

  17. X. D. Chen, V. Dusevich, J. Q. Feng, S. C. Mamolagas, and R. L. Jilka, J. Bone Miner. Res., 22, 1943 (2007).

    Article  CAS  Google Scholar 

  18. T. Hoshiba, N. Kawazoe, T. Tateishi, and G. Chen, J. Biol. Chem., 284, 31164 (2009).

    Article  CAS  Google Scholar 

  19. N. D. Evans, E. Gentleman, X. Chen, C. J. Roberts, J. M. Polak, and M. M. Stevens, Biomaterials, 31, 3244 (2010).

    Article  CAS  Google Scholar 

  20. P. Rico, J. C. R. Hernandez, D. Moratal, G. Altankov, M. M. Pradas, and M. S. Sanchez, Tissue Eng., 15, 3271 (2009).

    Article  CAS  Google Scholar 

  21. K. J. M. Boonen, K. Y. Rosaria-Chak, F. P. T. Baaijens, D. W. J. van der Schaft, and M. J. Post, Am. J. Physiol. Cell Physiol., 296, C1338 (2009).

    Article  CAS  Google Scholar 

  22. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Science, 23, 1708 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwideok Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, G.R., Lee, J.G., Chun, H.J. et al. Characterization of naturally derived macromolecular matrix and its osteogenic activity with preosteoblasts. Macromol. Res. 20, 868–874 (2012). https://doi.org/10.1007/s13233-012-0119-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0119-x

Keywords

Navigation