Skip to main content
Log in

Splitting and broadening of the emission bands of Y2O3:Eu3+,Nd3+ and its dependence on Nd3+ concentration and annealing temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Although Eu3+ ion-doped Y2O3 has been extensively used as red phosphors, their color rendering needs to be improved for high-quality illumination and displaying. Here, we show that the emission spectra of Y2O3:Eu3+ red phosphors can be broadened by the doping of Nd3+ ion so that the color rendering capability of Y2O3:Eu3+ was remarkably enhanced. Y2O3:Eu3+ and Y2O3:Eu3+,Nd3+ colloidal spheres were synthesized by wet chemical procedure and high-temperature treatment. The fluorescence measurement under the 254 and 380 nm ultraviolet excitation indicates that the 612 nm red emission peak of Eu3+ can be splitted into two ones by the doping of Nd3+ ion, of which the full width at half maximum (FWHM) is broadened from 4.2 nm to 9.6 nm. By varying the concentration of Nd3+ ion, it was determined that the optimal doping concentration of Nd3+ ion is of 3 mol% for realizing the strongest emission intensity. The further increase of Nd3+ ion exceeding 3 mol% would lead to a concentration quenching phenomenon. The analysis based on XRD spectra and the simplified energy diagram suggested that the doped Nd3+ ion not only monitored the growth dynamics, but also took an efficient energy transfer and a cross relaxation process to generate intense emission from Eu3+ ion in both of C2 and S6 sites, instead of preferable one type of Eu3+ site (C2 or S6) in the Nd3+ undoped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang YC, Park SB, Lenggoro IW, Okuyama K (1999) J Mater Res 14(6):2611

    Article  CAS  Google Scholar 

  2. Kang Y, Roh H, Park S (2000) Adv Mater 12:6

    Google Scholar 

  3. Chen X, Yang L, Cook RE, Skanthakumar S, Shi D, Liu GK (2003) Nanotechnology 14:670

    Article  CAS  Google Scholar 

  4. Bihari B, Eilers H, Tissue BM (1997) J Lumin 75:1

    Article  CAS  Google Scholar 

  5. Williams DK, Bihari B, Tissue BM, McHale JM (1998) J Phys Chem B 102:916

    Article  CAS  Google Scholar 

  6. Eilers H, Tissue BM (1996) Chem Phys Lett 251:74

    Article  CAS  Google Scholar 

  7. Sun L, Qian C, Liao C, Wang X, Yan C (2001) Solid State Commun 119:393

    Article  CAS  Google Scholar 

  8. Morales Ramírez AJ, Murillo AG, Carrillo Romo FJ, Ramírez Salgado J, Le Luyer C, Chadeyron G, Boyer D (2009) J Moreno Palmerin Thin Solid Films 517:6753

    Article  Google Scholar 

  9. Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Nat Photonics 3:180

    Article  CAS  Google Scholar 

  10. Yang J, Quan Z, Kong D, Liu X, Lin J (2007) Cryst Growth Des 7:730

    Article  CAS  Google Scholar 

  11. Patra A, Friend CS, Kapoor R, Prasad PN (2002) J Phys Chem B 106:1909

    Article  CAS  Google Scholar 

  12. Li L, Yang H, Moon B, Choi B, Jeong J, Kim K (2010) Mater Chem Phys 119:471

    Article  CAS  Google Scholar 

  13. Song HW, Chen BJ (2002) Appl Phys Lett 81:1776

    Article  CAS  Google Scholar 

  14. Pang Q, Shi J, Liu Y (2003) Mater Sci Eng B 103:57

    Article  Google Scholar 

  15. Konrad A, Fries T, Gahn A (1999) J Appl Phys 86:3129

    Article  CAS  Google Scholar 

  16. Wu CF, Qin WP, Qin GS (2003) Appl Phys Lett 82:520

    Article  CAS  Google Scholar 

  17. Zhang JL, Hong GY (2004) J Solid State Chem 177:1292

    Article  CAS  Google Scholar 

  18. Qi ZM, Shi CS (2002) Appl Phys Lett 81:2857

    Article  CAS  Google Scholar 

  19. Pązik R, Hreniak D, Stręk W, Kessler VG, Seisenbaeva GA (2008) J Alloys Compd 451:557

    Article  Google Scholar 

  20. Niraj Luwang M, Ningthoujam RS, Jagannath, Srivastava SK, Vatsa RK (2010) J Am Chem Soc 132:2759

    Article  Google Scholar 

  21. Macedo AG, Ananias D, André PS, Sá Ferreira RA, Kholkin AL, Carlos LD, Rocha J (2008) Nanotechnology 19:295702

    Article  Google Scholar 

  22. Solarz P (2008) Opt Mater 31:114

    Article  CAS  Google Scholar 

Download references

Acknowledgement

A project supported by research fund of Hunan provincial education Department: (2009)192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangdong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, H., Zhan, S. et al. Splitting and broadening of the emission bands of Y2O3:Eu3+,Nd3+ and its dependence on Nd3+ concentration and annealing temperature. J Mater Sci 46, 7620–7625 (2011). https://doi.org/10.1007/s10853-011-5739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5739-6

Keywords

Navigation