Skip to main content
Log in

Reactive extrusion of polypropylene/polystyrene blends with supercritical carbon dioxide

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstracts

A reactive extrusion process for immiscible polypropylene/polystyrene (PP/PS) blends with peroxides and multifunctional agents in the presence of supercritical carbon dioxide (scCO2) was studied. The PP/PS blends were investigated by rheological measurement, scanning electron microscopy, thermal analyzer, and mechanical testers. The results show that the complex viscosity and the storage modulus of the blends increase with the addition of peroxides and multifunctional agents, which might represent the formation of copolymer during melt processing. From the morphology analysis of the blends, the size of the dispersed PS domain decreases significantly. Moreover, the analysis of the blends also reveals that the use of supercritical carbon dioxide leads to an increase of complex viscosity and a decrease of domain size. It was believed that the use of scCO2 improved the compatibility of the blends. The interfacial tensions of the PP/PS blends were predicted theoretically from the rheological data using the Choi and Schowalter model and the Palierne model. The values of the interfacial tension decreased as the compatibility of PP/PS blends was improved. From the results above, we strongly suggest that the use of supercritical carbon dioxide-assisted reactive extrusion is an effective way to improve the compatibility of the PP/PS blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. J. Folkes and P. S. Hope, Polymer Blends and Alloys, Blackie Academic & Professiona, New York, 1993.

    Book  Google Scholar 

  2. L. A. Utracki, Two-Phase Polymer System, Hanser, Munich, 1991.

    Google Scholar 

  3. D. R. Paul and C. B. Bucknall, Polymer Blends, Wiley, New York, 2000.

    Google Scholar 

  4. S. Wu, Polym. Eng. Sci., 27, 335 (1987).

    Article  CAS  Google Scholar 

  5. D. B. Favis and J. P. Chalifoux, Polym. Eng. Sci., 27, 1591 (1987).

    Article  CAS  Google Scholar 

  6. G. Wildes, H. Keskkula, and D. R. Paul, J. Polym. Sci., 37, 71 (1996).

    Google Scholar 

  7. K. Cho, H. Jeon, C. Park, J. Jim, and K. Kim, Polymer, 37, 1117 (1996).

    Article  CAS  Google Scholar 

  8. C. W. Macosko, P. Guegan, A. Kandpur, A. Nakayama, P. Marachel, and T. Inoue, Macromolecules, 29, 5590 (1996).

    Article  CAS  Google Scholar 

  9. H. Gramespacher and J. Meissner, J. Rheol., 36, 1127 (1992).

    Article  CAS  Google Scholar 

  10. C. Koning, M. Van Duin, C. Pagnoulle, and R. Jerome, Prog. Polym. Sci., 23, 707 (1998).

    Article  CAS  Google Scholar 

  11. C. Koning, M. Duin, C. Pagnoulle, and R. Jerome, Prog. Polym. Sci., 23, 707 (1998).

    Article  CAS  Google Scholar 

  12. H. Kim, H. Lee, and J. W. Lee, Korea-Australia Rheol. J., 19, 1 (2007).

    Google Scholar 

  13. E. Kung, A. J. Lesser, and T. J. McCarthy, Macromolecules, 31, 4160 (1998).

    Article  CAS  Google Scholar 

  14. M. D. Elkovitch, D. L. Tomasko, and L. J. Lee, Polym. Eng. Sci., 39, 2075 (1999).

    Article  CAS  Google Scholar 

  15. M. Lee, C. Tzoganakis, and C. Park, Polym. Eng. Sci., 38, 1112 (1998).

    Article  CAS  Google Scholar 

  16. M. D. Elkovitch, L. J. Lee, and D. L. Tomasko, ANTEC, 2, 2811 (1999).

    Google Scholar 

  17. M. Lee, C. B. Park, and C. Tzoganakis, Polym. Eng. Sci., 39, 99 (1999).

    Article  Google Scholar 

  18. M. Lee, C. B. Park, C. Tzoganakis, and H. E. Naguib, ANTEC, 45, 1241 (1999).

    Google Scholar 

  19. C. B. Park, D. F. Baldwin, and N. P. Suh, Polym. Eng. Sci., 35, 432 (1995).

    Article  CAS  Google Scholar 

  20. B. M. Dorscht and C. Tzoganakis, J. Appl. Polym. Sci., 87, 1116 (2003).

    Article  CAS  Google Scholar 

  21. S. Hoppe, C. Schrauwen, C. Fonteix, and F. Pia, in 8th International Workshop on Polymer Reaction Engineering, Wiley-VCH, Hamburg, 2004, p 123.

    Google Scholar 

  22. P. Cassagnau, V. Bounor-Legare, and F. Fenouillot, Int. Polym. Proc., 3, 218 (2007).

    Google Scholar 

  23. B. D. Favis, Polymer, 35, 1552 (1994).

    Article  CAS  Google Scholar 

  24. N. Chapleau, B. D. Favis, and P. J. Carreau, J. Polym. Sci. Part B: Polym. Phys., 36, 1947 (1998).

    Article  CAS  Google Scholar 

  25. N. R. Demarquette and M. R. Kamal, J. Appl. Polym. Sci., 70, 75 (1998).

    Article  CAS  Google Scholar 

  26. D. Shi, G. H. Hu, Z. Ke, R. K. Y. Li, and J. H. Yin, Polymer, 47, 4659 (2006).

    Article  CAS  Google Scholar 

  27. Y. Zhao, H. X. Huang, and Y. K. Chen, Polym. Bull., 64, 291 (2009).

    Article  Google Scholar 

  28. K. Cao, Z. Shen, B. Qu, and Z. Yao, Chem. Eng. Sci., 65, 1621 (2010).

    Article  CAS  Google Scholar 

  29. B. K. Kim, K. H. Shon, and H. M Jeong, J. Appl. Polym. Sci., 92, 1672 (2004).

    Article  CAS  Google Scholar 

  30. Y. T. Sung, M. S. Han, J. C. Hyun, and W. B. Kim, Polymer, 44, 1681 (2003).

    Article  CAS  Google Scholar 

  31. P. H. P Macaubas and N. R. Demarquette, Polymer, 42, 2543 (2001).

    Article  CAS  Google Scholar 

  32. F. H. Su and H. X. Huang, Adv. Polym. Tech., 28, 16 (2009).

    Article  CAS  Google Scholar 

  33. N. Tortorella and C. L. Beatty, Polym. Eng. Sci., 48, 2098 (2008).

    Article  Google Scholar 

  34. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons Inc, New York, 1990.

    Google Scholar 

  35. N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer Berlin, 1989.

    Book  Google Scholar 

  36. H. Gramespacher and J. Mwissner, J. Rheol., 36, 1127 (1992).

    Article  CAS  Google Scholar 

  37. S. J. Choi and W. R. Schowalter, Phys. Fluids, 18, 420 (1992).

    Article  Google Scholar 

  38. J. F. Palierne, Rheol. Acta, 29, 204 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, T.Y., Lee, S., Yoo, Y. et al. Reactive extrusion of polypropylene/polystyrene blends with supercritical carbon dioxide. Macromol. Res. 20, 559–567 (2012). https://doi.org/10.1007/s13233-012-0095-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0095-1

Keywords

Navigation