Skip to main content
Log in

Multifunctional wool fiber treated with ɛ-polylysine

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A creative method for fabricating environmentally-benign multifunctional wool fibers was established and reported. Through coating the wool fibers with ɛ-polylysine, the surface morphology and biochemical properties of the fibers were altered, enhancing their antimicrobial, hygroscopic and finished properties. The process of ɛ-polylysine coating was dependent on the solution environment, which influenced the electrostatic interactions between ɛ-polylysine molecules and wool fibers. The results showed that a maximum ɛ-polylysine coating (23.60 mg/g) on the surface of wool fibers was reached when wool fibers were soaked at 50 °C for 2 h in the solution with 10% on weight of fabric (owf) ɛ-polylysine and pH 8.0. The coated wool fiber showed promising antimicrobial rates of 96.98% and 97.93% against Escherichia coli and Micrococcus luteus, respectively. The wool fiber coated with the ɛ-polylysine was more hydrophilic than the uncoated wool fabrics. The functional wool fibers after water scrubbing for two times still have good antibacterial efficiency against Escherichia coli and Micrococcus luteus, and antimicrobial rates were 96.77% and 97.33%, respectively. This study shows that wool fibers modified by the nontoxic ɛ-polylysine have a great potential to be used in constructing multifunctional textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. F. Moafi, A. F. Shojaie and M.A. Zanjanchi, Appl. Surf. Sci., 256, 4310 (2010).

    Article  CAS  Google Scholar 

  2. S. Jus, M. Schroeder, G.M. Guebitz, E. Heine and V. Kokol, Enzyme Microb. Technol., 40, 1705 (2007).

    Article  CAS  Google Scholar 

  3. B. S. Xu, M. Niu, L.Q. Wei, W. S. Hou and X.G. Liu, J. Photochem. Photobiol., A., 188(1), 98 (2007).

    Article  CAS  Google Scholar 

  4. Carla J.S.M. Silva, M. Prabaharan, G. Gvbitz and A. Cavaco-Paulo, Enzyme Microb. Technol., 36, 917 (2005).

    Article  CAS  Google Scholar 

  5. S.Y. Han and Y. Q. Yang, Dyes Pigm.., 64(2), 157 (2005).

    Article  CAS  Google Scholar 

  6. G. Freddi, T. Arai and G.M. Colonna, J. Appl. Polym. Sci., 82(14), 3513 (2001).

    Article  CAS  Google Scholar 

  7. H.Y. Ki, J. H. Kim, S. C. Kwon and S. H. Jeong J. Membr. Sci., 42(19), 8020 (2007).

    CAS  Google Scholar 

  8. T. Yuranova, A.G. Rinon, A. Bozzi, S. Parra, C. Pulgarin, P. Albers and J. Kiwi, J. Photochem. Photobiol., A., 16(1), 27 (2003).

    Article  Google Scholar 

  9. B. J. Kim and S. J. Park, J. Colloid Interface Sci., 325, 297 (2008).

    Article  CAS  Google Scholar 

  10. Y. Gao and R. Cranston, Textile Res. J., 78, 60 (2008).

    Article  CAS  Google Scholar 

  11. H.Y. Ki, J. H. Kim, S. C. Kwon and S. H. Jeong, J. Mater. Sci., 42, 8020 (2007).

    Article  CAS  Google Scholar 

  12. S. H. Wang, W. S. Hou and H. J. Jia, Surf. Coat. Technol., 202(3), 460 (2007) (Chinese).

    Article  CAS  Google Scholar 

  13. D. Chen, L. F. Tan, H.Y. Liu, J.Y. Hu and Y. Li, Langmuir., 26(7), 4675 (2010).

    Article  CAS  Google Scholar 

  14. X. Wang, G.Y. Cao and W. L. Xu, J. Appl. Polym. Sci., 112(4), 1959 (2009).

    Article  CAS  Google Scholar 

  15. C. H. Y. Chen and C. L. Chiang, Mater. Lett., 62, 3607 (2008).

    Article  CAS  Google Scholar 

  16. T. Yoshida and T. Nagasawa, Appl. Microbiol. Biotechnol., 62, 21 (2003).

    Article  CAS  Google Scholar 

  17. I. L. Shih, M. H. Shen and Y. T. Van, Bioresour. Technol., 97, 1148 (2006)

    Article  CAS  Google Scholar 

  18. H. Jun, I. Takafumi, S. Ninomiya, H. Seki, K. Uohama, S. Kimura, Y. Yanagimoto and J.W. Barnett, Regul. Toxicol. Pharm., 37, 328 (1995).

    Google Scholar 

  19. S. Shima, H. Matsuoka, T. Iwamoto and H. Sakai, J. Antibiot., 37, 1449 (1984).

    Article  CAS  Google Scholar 

  20. H. Sakamoto, Y. Kumazama, S. Toiguchi, S. Katsuya, S. Takahko and M. Masao, J. Food Sci., 60(2), 300 (2006).

    Article  Google Scholar 

  21. Q. Wang, G. B. Jin, X. R. Fan, X. F. Zhao, L. Cui and P. Wang, Appl. Biochem. Biotechnol., 160, 2486 (2010).

    Article  CAS  Google Scholar 

  22. X. H. Feng, H. Xu, X.Y. Xu, J. Yao and Z. Yao, Process Biochem., 43, 667 (2008).

    Article  CAS  Google Scholar 

  23. Q. Wang, X. R. Fan and Y. J. Huc, Bioprocess Biosyst. Eng., 32, 633 (2009).

    Article  CAS  Google Scholar 

  24. M. Z. He, J. Yan and Y. Gong, Shanghai Text Sci. Technol., 33, 62 (2005).

    Google Scholar 

  25. K. L. Xie and A. Q. Hou, J. Dispersion Sci. Technol., 29(3), 436 (2008).

    Article  CAS  Google Scholar 

  26. W. L. Xu, W.G. Cui, W. B. Li and W.Q. Guo, Powder Technol., 140, 136 (2004).

    Article  CAS  Google Scholar 

  27. W. L. Xu, G. Z. Ke, J. H. Wu and X.G. Wang, Eur. Polym. J., 42, 2168 (2006).

    Article  CAS  Google Scholar 

  28. S. Jia, B. Q. Fan, Y. J. Dai, G. L. Wang, P. Peng and Y.Y. Jia, Food Sci. Biotechnol., 19(2), 361 (2010).

    Article  CAS  Google Scholar 

  29. M. Huson, D. Evans, J. Church, S. Hutchinsan, J. Maxwell and G. Corino, J. Struct. Biol., 163(2), 127 (2008).

    Article  CAS  Google Scholar 

  30. X. J. Feng and L. Jiang, Adv. Mater., 18, 3063 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J., Zhong, Z. & Xu, H. Multifunctional wool fiber treated with ɛ-polylysine. Korean J. Chem. Eng. 29, 507–512 (2012). https://doi.org/10.1007/s11814-011-0194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0194-2

Key words

Navigation