Skip to main content

Advertisement

Log in

Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial community in the anode biofilm was adapted by establishment of xylose-degrading bacteria of the Bacteriodetes phylum (16%) and Geobacter sulfurreducens (49%). During the process, 61% of the chemical oxygen demand was removed as hydrogen at 64% yield. The total energy production yield was 78% considering the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during simultaneous production of hydrogen from consumption of 95% for the hemicellulose and 100% of the fatty acids. Final calculations showed that hydrolysate produced from 1 kg wheat straw was upgraded by means of the MEC to 22 g hydrogen (266 L), 8 g xylan, and 9 g polyphenolics for potential utilization in biobased materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  Google Scholar 

  • Akasaka H, Izawa T, Ueki K, Ueki A (2006) Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161

    Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells—electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913

    Article  CAS  Google Scholar 

  • Call DF, Wagner RC, Logan BE (2009) Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell. Appl Environ Microbiol 75:7579–7587

    Article  CAS  Google Scholar 

  • Cervantes FJ, Duong-Dac T, Ivanova AE, Roest K, Akkermans ADL, Lettinga G, Field JA (2003) Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors. Biotechnol Lett 25:39–45

    Article  CAS  Google Scholar 

  • Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Clauwaert P, van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913

    Article  CAS  Google Scholar 

  • Deldot T, Osawa R, Stackebrandt E (1993) Phascolarctobacterium faecium gen-nov, spec nov, a novel taxon of the Sporomusa group of bacteria. Syst Appl Microbiol 16:380–384

    Google Scholar 

  • Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrogen Energ 32:2296–2304

    Article  CAS  Google Scholar 

  • Graham HD (1992) Stabilization of the Prussian blue colour in the determination of polyphenols. J Agr Food Chem 40:801–805

    Article  CAS  Google Scholar 

  • Hansen ML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505

    Article  CAS  Google Scholar 

  • Huang L, Logan B (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355

    Article  CAS  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  Google Scholar 

  • Min B, Román ÓB, Angelidaki I (2008) Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 30:1213–1218

    Article  CAS  Google Scholar 

  • Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523

    CAS  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31:1632–1640

    Article  CAS  Google Scholar 

  • Thomsen MH, Thygesen A, Thomsen AB (2008) Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresour Technol 99:4221–4228

    Article  CAS  Google Scholar 

  • Thomsen MH, Thygesen A, Thomsen AB (2009) Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol 83:447–455

    Article  CAS  Google Scholar 

  • Thygesen A, Thomsen AB, Schmidt AS, Jørgensen H, Ahring BK, Olsson L (2003) Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb Technol 32:606–615

    Article  CAS  Google Scholar 

  • Thygesen A, Thomsen MH, Jørgensen H, Christensen BH, Thomsen AB (2004) Hydrothermal treatment of wheat straw on pilot plant scale. In: 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, ISBN 88-89407-03-4

  • Thygesen A, Poulsen FW, Min B, Angelidaki I, Thomsen AB (2009) The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresour Technol 100:1186–1191

    Article  CAS  Google Scholar 

  • Thygesen A, Possemiers S, Thomsen AB, Verstraete W (2010) Integration of microbial electrolysis cells (MECs) in the biorefinery for production of ethanol, H2 and phenolics. Waste Biomass Valor 1:9–20

    Article  CAS  Google Scholar 

  • Ueki A, Nishiyama T (2009) Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:1901–1907

    Article  Google Scholar 

  • Wittebolle L, Vervaeren H, Verstraete W, Boon N (2008) Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl Environ Microbiol 74:286–293

    Article  CAS  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  CAS  Google Scholar 

  • Zhang Y, Min B, Huang L, Angelidaki I (2009) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75:3389–3395

    Article  CAS  Google Scholar 

  • Zuo Y, Maness PC, Logan BE (2006) Electricity production from steam-exploded corn stover biomass. Energ Fuel 20:1716–1721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Danish Research council is gratefully acknowledged for supporting the research project (Microbial fuel cell—used in direct conversion of lignocellulosic waste to energy; project number 09-059959). Tomas Fernqvist, Ingelis Larsen, Annette E. Jensen, Peter Clauwaert, Tim Lacoera, and Siska Maertens are thanked for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Thygesen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 715 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thygesen, A., Marzorati, M., Boon, N. et al. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Appl Microbiol Biotechnol 89, 855–865 (2011). https://doi.org/10.1007/s00253-010-3068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3068-3

Keywords

Navigation