Skip to main content
Log in

Continuous time random walks and heat transfer in porous media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

An approach to describe heat transfer in porous media is presented on the basis of the continuous time random walk (CTRW) framework. CTRW is capable of quantifying both local equilibrium and non-equilibrium heat transfer in heterogeneous domains, and is shown here to match published experimental data of non-equilibrium thermal breakthrough. It is argued that CTRW will be particularly applicable to the quantification of heat transfer in naturally heterogeneous geological systems, such as soils and geothermal reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publications Inc., New York (1970)

  • Alazmi B., Vafai K. (2000). Analysis of variants within the porous media transport models. J. Heat Trans. 122, 303–326

    Article  Google Scholar 

  • Amiri A., Vafai K. (1994). Analysis of dispersion effects and nonthermal equilibrium, non-Darcian, variable porosity, incompressible flow through porous media. Int. J. Heat Mass Transf. 37, 939—954

    Article  Google Scholar 

  • Berkowitz B., Klafter J., Metzler R., Scher H. (2002). Physical pictures of transport in heterogeneous media: advection-dispersion, random walk and fractional derivative formulations. Water Resour. Res. 38, 1191 doi:10.1029/2001WR001030

    Article  Google Scholar 

  • Berkowitz B., Kosakowski G., Margolin G., Scher H. (2001). Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Ground Water 39, 593–604

    Article  Google Scholar 

  • Berkowitz B., Scher H., Silliman S.E. (2000). Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36(1):149–158

    Article  Google Scholar 

  • Cortis A., Berkowitz B. (2004). Anomalous transport in classical soil and sand columns. Soil Sci. Soc. Am. J. 68, 1539–1548

    Article  Google Scholar 

  • Cortis A., Berkowitz B. (2005). Computing anomalous contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43, 947–950

    Article  Google Scholar 

  • Cortis A., Gallo C., Scher H., Berkowitz B. (2004). Numerical simulation of non-Fickian transport in geological formations with multiple-scale heterogeneities. Water Resour. Res. 40, W04209 doi:10.1029/2003WR002750

    Article  Google Scholar 

  • Dawe R.A. (1991). Enhancing oil-recovery. J. Chem. Technol. Biot. 51, 361–393

    Google Scholar 

  • de Hoog F.R., Knight J.H., Stokes A.N. (1982). An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 3, 357–366

    Article  Google Scholar 

  • Dentz M., Berkowitz B. (2003). Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39(5):1111 doi:10.1029/2001WR001163

    Article  Google Scholar 

  • Dentz M., Cortis A., Scher H., Berkowitz B. (2004). Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27, 155–173 doi:10.1016/j.advwatres.2003.11.002

    Article  Google Scholar 

  • Dixon A.G., Cresswell D.L. (1979). Theoretical prediction of effective heat transfer parameters in packed beds. AIChE J. 25, 663–676

    Article  Google Scholar 

  • Hoffman B.T., Kovscek A.R. (2004). Efficiency and oil recovery mechanisms of steam injection into low permeability, hydraulically fractured reservoirs. Petrol. Sci. Technol. 22, 537–564

    Article  Google Scholar 

  • Hwang G.J., Chao C.H. (1994). Heat transfer measurement and analysis for sintered porous channels. J. Heat Trans. 116, 456–464

    Article  Google Scholar 

  • Hwang G.J., Wu C.C., Chao C.H. (1995). Investigation of non-Darcian forced convection in an asymmetrically heated sintered porous channel. J. Heat Trans. 117, 725—732

    Google Scholar 

  • Kenkre V.M., Montroll E.W., Shlesinger M.F. (1973). Generalized master equations for continuous time random walks. J. Stat. Phys. 9, 45–50

    Article  Google Scholar 

  • Kim J., Park Y., Harmon T.C. (2005). Real-time model parameter estimation for analyzing transport in porous media. Ground Water Monit. R. 25, 78–86

    Article  Google Scholar 

  • Klafter J., Silbey R. (1980). Derivation of continuous time random walk equations. Phys. Rev. Lett. 44, 55–58

    Article  Google Scholar 

  • Kosakowski G., Berkowitz B., Scher H. (2001). Analysis of field observations of tracer transport in a fractured till. J. Contam. Hydrol. 47, 29–51

    Article  Google Scholar 

  • Levec J., Carbonell R.G. (1985). Longitudinal and lateral thermal dispersion in packed beds, Part II: comparison between theory and experiment. AIChE J. 31, 591–602

    Article  Google Scholar 

  • Liang C.Y.. Yang W.J. (1975). Modified single-blow technique for performance evaluation on heat transfer surfaces. J. Heat Trans. 96, 16–21

    Google Scholar 

  • Malate R.C.M., O’Sullivan M.J. (1991). Modelling of chemical and thermal changes in well pn-26 Palinpinon geothermal field, Philippines. Geothermics 260, 291–318

    Article  Google Scholar 

  • Montroll E.W., Scher H. (1973). Random walks on lattices. IV: continuous time random walks and influence of absorbing boundaries. J. Stat. Phys. 9(2):101–135

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (1992)

  • Oballa V., Coombe D.A. Buchanan W.L. (1993). Factors affecting the thermal response of naturally fractured reservoirs. J. Can. Petrol. Technol. 32, 31–42

    Google Scholar 

  • Ochsner T.E., Horton R., Kluitenberg G.J., Wang Q.J. (2005). Evaluation of the heat pulse ratio method for measuring soil water flux, Soil Sci. Soc. Am. J. 69, 757–769

    Article  Google Scholar 

  • Oppenheim, I., Shuler, K.E., Weiss, G.H.: The Master Equation. MIT Press, Cambridge (1977)

  • Paek J.W., Kang B.H., Hyun J.M. (1999). Transient cool-down of a porous medium in pulsating flow. Int. J. Heat Mass Trans. 42, 3523–3527

    Article  Google Scholar 

  • Paek J.W., Kang B.H., Hyun J.M. (2001). An experimental study on cool-down of a heterogeneous porous body in throughflow. Int. J. Heat Mass Trans. 44, 683–687

    Article  Google Scholar 

  • Ren T., Kluitenberg G.J., Horton R. (2000). Determining soil water flux and pore water velocity by a heat pulse technique. Soil Sci. Soc. Am. J. 64, 552–560

    Article  Google Scholar 

  • Scher H., Montroll E.W. (1975). Anomalous transit time dispersion in amorphous solids. Phys. Rev. B 12(6):2455–2477

    Article  Google Scholar 

  • Shlesinger M.F. (1974). Asymptotic solutions of continuous time random walks. J. Stat. Phys. 10, 421–434

    Article  Google Scholar 

  • Shlesinger, M.F.: Random Processes. Encyclopedia of Applied Physics, vol. 16. VCH Publishers Inc., New York (1996)

  • Steffanson V. (1997). Geothermal reinjection experience. Geothermics 26, 99–139

    Article  Google Scholar 

  • Vafai A., Alkire R.L., Tien C.L. (1985). An experimental investigation of heat transfer in variable porosity media. J. Heat Trans. 107, 642–647

    Article  Google Scholar 

  • Wang, Q.J., Ochsner, T.E., Horton, R.: Mathematical analysis of heat pulse signals for soil water flux determination. Water Resour. Res. 38, (1091) (2002)

  • Wu C.C., Hwang G.J. (1998). Flow and heat transfer characteristics inside packed and fluidized beds. J. Heat Trans. 120, 667–673

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Berkowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emmanuel, S., Berkowitz, B. Continuous time random walks and heat transfer in porous media. Transp Porous Med 67, 413–430 (2007). https://doi.org/10.1007/s11242-006-9033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9033-z

Keywords

Navigation