Skip to main content
Log in

Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential of maize silage as a feedstock to produce bioethanol was evaluated in the present study. The hydrothermal pretreatment with five different pretreatment severity factors (PSF) was employed to pretreat the maize silage and compared in terms of sugar recovery, toxic test, and ethanol production by prehydrolysis and simultaneous saccharification and fermentation. After pretreatment, most of the cellulose remained in the residue, ranging between 85.87% by the highest PSF (185°C, 15 min) and 92.90% obtained at the lowest PSF (185°C, 3 min). A larger part of starch, varying from 71.64% by the highest PSF to 78.28% by the lowest, was liberated into liquor part, leaving 8.05–11.74% in the residues. Xylan recovery in the residues increased from 44.25% at the highest PSF to 82.95% at the lowest. The recovery of xylan in liquor changed from 20.13% to 50.33%. Toxic test indicated that all the liquors from the five conditions were not toxic to the Baker’s yeast. Pretreatment under 195°C for 7 min had the similar PSF with that of 185°C for 15 min, and both gave the higher ethanol concentration of 19.92 and 19.98 g/L, respectively. The ethanol concentration from untreated maize silage was only 7.67 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. US Congress. Energy Policy Act of 2005. Available from: www.epa.gov/OUST/fedlaws /publ_ 109-058.pdf.p. 109–58.

  2. Directive 2003/30/EC (2003). Directive of the European parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport.

  3. Communication from the commission to the council and the European parliament. Brussels, 10.1.2007. SEC(2006) 1719

  4. Pimentel, D., & Patzek, T. W. (2005). Natural Resources Research, 14, 65–76.

    Article  CAS  Google Scholar 

  5. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., et al. (2008). Science, 319, 1238–1240.

    Article  CAS  Google Scholar 

  6. Jensen, C., Weisbjerg, M. R., Norgaard, P., & Hvelplund, T. (2005). Animal Feed Science and Technology, 118, 279–294.

    Article  Google Scholar 

  7. Pedersen, C. A. (2003) Landskontoret for Planteavl, Aarhus Denmark.

  8. Holm-Nielsen, J. B., Madsen, M., Popiel, P. O. (2006) Proceedings: World Bioenergy 2006, Conference for Biomass for energy, 05/2006, Jőnkőbing Sweden.

  9. Pedersen, C. A. (2006) Landskontoret for Planteavl, Aarhus Denmark.

  10. Thomsen, M. H., Holm-Nielsen, J. B., Oleskowicz-Popiel, P., & Thomsen, A. B. (2008). Applied Biochemistry and Biotechnology, 148, 22–33.

    Article  Google Scholar 

  11. Thomsen, M. H., Popiel, P. O., Lisiecki, P., Varga, E., Thomsen, A. B., Esbensen, K. H. (2005) Proceedings: 14th European Biomass Conference and Exhibitions, 17–21 October 2005, Paris, France.

  12. Bjerre, A. B., & Sørensen, E. (1992). Industrial & Engineering Chemistry Research, 31, 574–577.

    Article  Google Scholar 

  13. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London Series A, 321, 523–536.

    Article  CAS  Google Scholar 

  14. Cara, C., Ruiz, E., Oliva, J. M., Saez, F., & Castro, E. (2008). Bioresource Technology, 99, 1869–1876.

    Article  CAS  Google Scholar 

  15. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  16. Stojanovic, Z., Katsikas, L., Popovic, I., Jovanovic, S., & Jeremic, K. (2005). Polymer Degradation and Stability, 87, 177–182.

    Article  CAS  Google Scholar 

  17. Linde, M., Jakobsson, E. L., Galbe, M., & Zacchi, G. (2008). Biomass & Bioenergy, 32, 326–332.

    Article  CAS  Google Scholar 

  18. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  19. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., & Wooley, R. J. (2000). Enzyme and Microbial Technology, 27, 240–247.

    Article  CAS  Google Scholar 

  20. Taherzadeh, M. J., Niklasson, C., & Liden, G. (1997). Chemical Engineering Science, 52, 2653–2659.

    Article  CAS  Google Scholar 

  21. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). Journal of Biotechnology, 139, 300–305.

    Article  CAS  Google Scholar 

  22. Piotr, O. P., Lisiecki, P., Holm-Nielsen, J. B., Thomsen, A. B., & Thomsen, M. H. (2008). Bioresource Technology, 99, 5327–5334.

    Article  Google Scholar 

  23. Xu, J., Thomsen, M. H., & Thomsen, A. B. (2009). J. Microbial Biotechnology, . doi:10.4014/jmb.0809.514.

    Google Scholar 

Download references

Acknowledgement

The work was financially supported by HTF project (10077-1). We would like to thank Tomas Fernqvist, Ingelis Larsen, and Annette Eva Jensen in Risø-DTU for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Thomsen, M.H. & Thomsen, A.B. Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production. Appl Biochem Biotechnol 162, 33–42 (2010). https://doi.org/10.1007/s12010-009-8706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8706-9

Keywords

Navigation