Skip to main content
Log in

Evaluation of Oxalate Decarboxylase and Oxalate Oxidase for Industrial Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ulmgren, P., & Rådeström, R. (1997). Proc. TAPPI Minimum effluent mills symposium. San Francisco, CA, USA, pp. 51-62.

  2. He, Z., Ni, Y., & Zhang, E. (2003). Journal of Pulp and Paper Science, 29, 391–394.

    CAS  Google Scholar 

  3. Yu, L., & Ni, Y. (2006). Tappi Journal, 5, 9–12.

    CAS  Google Scholar 

  4. Krasowski, J. A., & Marton, J. (1983). Journal of Wood Chemistry and Technology, 3, 445–458.

    Article  CAS  Google Scholar 

  5. Nilvebrant, N.-O., & Reimann, A. (1996). Fourth European workshop on lignocellulosics and pulp (EWLP). Stresa, Italy, pp. 485-491.

  6. Elsander, A., Ek, M., & Gellerstedt, G. (2000). Tappi Journal, 83, 73–77.

    CAS  Google Scholar 

  7. Yu, L., & Ni, Y. (2005). Appita, 58, 138–142.

    CAS  Google Scholar 

  8. Dunwell, J. M., Khuri, S., & Gane, P. J. (2000). Microbiology and Molecular Biology Reviews, 64, 153–179.

    Article  CAS  Google Scholar 

  9. Escutia, M. R., Bowater, L., Edwards, A., Bottrill, A. R., Burrell, M. R., Polanco, R., et al. (2005). Applied and Environmental Microbiology, 71, 3608–3616.

    Article  CAS  Google Scholar 

  10. Lane, B. G. (2002). IUBMB Life, 53, 67–75.

    Article  CAS  Google Scholar 

  11. Nilvebrant, N.-O., Reimann, A., de Sousa, F., Cassland, P., Larsson, S., Hong, F., et al. (2002). Progress in Biotechnology, 21, 231–238.

    Article  CAS  Google Scholar 

  12. Larsson, S., Cassland, P., Jönsson, L. J., & Nilvebrant, N.-O. (2003). In S. D. Mansfield, & J. N. Saddler (Eds.), Applications of enzymes to lignocellulosics. ACS Symposium Series 855. Washington DC. USA. pp. 81-92.

  13. Dunwell, J. M., Purvis, A., & Khuri, S. (2004). Phytochemistry, 65, 7–17.

    Article  CAS  Google Scholar 

  14. Svedruzic, D., Jonsson, S., Toyota, C. G., Reinhardt, L. A., Ricagno, S., Lindqvist, Y., et al. (2005). Archives of Biochemistry and Biophysics, 433, 176–192.

    Article  CAS  Google Scholar 

  15. Shimazono, H. (1955). Journal of Biochemistry, 42, 321–340.

    CAS  Google Scholar 

  16. Emiliani, E., & Bekes, P. (1964). Archives of Biochemistry and Biophysics, 105, 488–493.

    Article  CAS  Google Scholar 

  17. Lillehoj, E. B., & Smith, F. G. (1965). Archives of Biochemistry and Biophysics, 109, 216–220.

    Article  CAS  Google Scholar 

  18. Mäkelä, M., Galkin, S., Hatakka, A., & Lundell, T. (2002). Enzyme and Microbial Technology, 30, 542–549.

    Article  Google Scholar 

  19. Tanner, A., & Bornemann, S. (2000). Journal of Bacteriology, 182, 5271–5273.

    Article  CAS  Google Scholar 

  20. Murthy, M. S. R., Talwar, H. S., Nath, R., & Thind, S. K. (1981). IRCS Medical Science, 9, 683–684.

    CAS  Google Scholar 

  21. Shimazono, H., & Hayaishi, O. (1957). Journal of Biological Chemistry, 227, 151–159.

    CAS  Google Scholar 

  22. Mehta, A., & Datta, A. (1991). Journal of Biological Chemistry, 266, 23548–23553.

    CAS  Google Scholar 

  23. Requena, L., & Bornemann, S. (1999). Biochemical Journal, 343, 185–190.

    Article  CAS  Google Scholar 

  24. Tanner, A., Bowater, L., Fairhurst, S. A., & Bornemann, S. (2001). Journal of Biological Chemistry, 276, 43627–43634.

    Article  CAS  Google Scholar 

  25. Sjöde, A., Winestrand, S., Nilvebrant, N.-O., & Jönsson, L. J. (2008). Enzyme and Microbial Technology, 43, 78–83.

    Article  Google Scholar 

  26. Liukko, S., & Poppius-Levlin, K. (1999). Water Science and Technology, 40(11–12), 249–258.

    Article  CAS  Google Scholar 

  27. Reimann, A., de Sousa, F., & Björklund Jansson, M. (2000). SCAN-Forsk 730.

  28. Emiliani, E., & Riera, B. (1968). Biochimica et Biophysica Acta, 167, 414–421.

    CAS  Google Scholar 

  29. Fuhrmann, A., Kleen, M., Jansson, M., Nilvebrant, N.-O., Marklund, A., & Ala-Kaila, K. (2000). SCAN-Forsk 737.

  30. Dahlman, O., de Sousa, F., & Ljungqvist, P. (1995). Proceedings of 8th Int. Symp. Wood Pulp. Chem. (ISWPC), Helsinki, 6-9 June 1995, Vol. 1, pp. 729–736.

  31. Kotsira, V. P., & Clonis, Y. D. (1997). Archives of Biochemistry and Biophysics, 340, 239–249.

    Article  CAS  Google Scholar 

  32. Chiriboga, J. (1966). Archives of Biochemistry and Biophysics, 116, 516–523.

    Article  CAS  Google Scholar 

  33. Woo, E.-J., Dunwell, J. M., Goodenough, P. M., Marvier, A. C., & Pickersgill, R. W. (2000). Nature Structural Biology, 7, 1036–1040.

    Article  CAS  Google Scholar 

  34. Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P., & Ealick, S. E. (2002). Biochemistry, 41, 7659–7669.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Agency for Innovation Systems, Vinnova, and the Knowledge Foundation (KK-stiftelsen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Winestrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassland, P., Sjöde, A., Winestrand, S. et al. Evaluation of Oxalate Decarboxylase and Oxalate Oxidase for Industrial Applications. Appl Biochem Biotechnol 161, 255–263 (2010). https://doi.org/10.1007/s12010-009-8769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8769-7

Keywords

Navigation