Skip to main content
Log in

Effect of sodium molybdate on the corrosion behavior of cold rolled steel in peracetic acid solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of sodium molybdate (Na2MoO4) on the corrosion of cold rolled steel (CRS) in peracetic acid (PAA) solution was investigated by gravimetric measurements, Tafel polarization curves, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). All the data indicate that Na2MoO4 acts as a very good inhibitor in PAA solution. The inhibition efficiency increases with increasing concentration of Na2MoO4 and immersion time. The inhibition efficiencies, calculated from gravimetric measurements, Tafel polarization curves and electrochemical impedance spectroscopy, are in reasonably good agreement and are very similar in the three cases. Furthermore, polarization data show that Na2MoO4 behaves as an anodic passive type inhibitor. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used to characterize the corrosion surface. A probable mechanism is presented to explain the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Flemmin HC (1984) Zentralbl Bakteriol Mikrobiol Hyg[B] 197:97

  2. Rossoni EMM, Gaylarde CC (2000) Int J Food Microbiol 61:81

    Article  CAS  Google Scholar 

  3. Wnuk SF, Lewandowsk E, Valdez CA et al (2000) Tetrahedron 56:7667

    Article  CAS  Google Scholar 

  4. Kitis M (2004) Environ Int 30:47

    Article  CAS  Google Scholar 

  5. Dell Erba A, Falsanisi D, Liberti L et al (2004) Desalination 168:435

    Article  CAS  Google Scholar 

  6. Monarca S, Feretti D, Collivignarelli C et al (2000) Water Res 34:4261

    Article  CAS  Google Scholar 

  7. Hinton BRW (1991) Met Finish 89:55

    CAS  Google Scholar 

  8. Robertson WD (1951) J Electrochem Soc 98:94

    Article  CAS  Google Scholar 

  9. Pryor MJ, Cohen M (1953) J Electrochem Soc 100:203

    Article  CAS  Google Scholar 

  10. Mitchell T (1973) US Pat 3723347

  11. Hogue RD, King TM, Mitchell RS (1976) US Pat 3989637

  12. Robitaille DR, Vukasovich MS (1979) US Pat 4149969

  13. Lipinski RJ (1979) US Pat 4138353

  14. Flynn RW, Grourke MJ (1981) US Pat 4243316

  15. Mu G, Li X, Qu Q et al (2006) Corros Sci 48:445

    Article  CAS  Google Scholar 

  16. Saremi M, Dehganian C, Mohammadi Sabet M (2006) Corros Sci 48:1404

    Article  CAS  Google Scholar 

  17. Hunkler F, Boehni H (1983) Werks Korros 34:68

    Article  Google Scholar 

  18. Bairamow AK, Zakipour S, Leygraf C (1985) Corros Sci 25:69

    Article  CAS  Google Scholar 

  19. Lu A, Guo J, Zen R (1986) Huagong Jixie 13:46

    CAS  Google Scholar 

  20. Bairamov AK, Verdiev SC (1992) Br Corros J 27:128

    CAS  Google Scholar 

  21. Yalmaz VT, Sagoe-Crentsil KK, Glasser FP (1991–1992) Adv Chem Res 4:97

    Google Scholar 

  22. Wilcox GD, Gabe DR (1987) Br Corros J 22:254

    CAS  Google Scholar 

  23. Robertson WD (1951) J Electrochem Soc 98:79

    Google Scholar 

  24. Shams EL, Din AM, Mohammed RA, Haggag HH (1997) Desalination 114:85

    Article  Google Scholar 

  25. Agarwala VS (1988) Int Corros Conf Ser NaCE-7:79

  26. Sastri VS, Bednar J (1990) Mat Perform 29:44

    CAS  Google Scholar 

  27. Sagoe-Crentsil KK, Yilmaz VT, Glasser FP (1991–1992) Adv Cem Res 4:91

  28. Bentiss F, Lebrini M, Lagrenée M (2005) Corros Sci 47:2915

    Article  CAS  Google Scholar 

  29. Qu Q, Jiang S, Bai W et al (2007) Electrochim Acta 52:6811

    Article  CAS  Google Scholar 

  30. Larabi L, Harek Y, Traisnel M et al (2004) J Appl Electrochem 34:833

    Article  CAS  Google Scholar 

  31. Veloz MA, González I (2002) Electrochim Acta 48:135

    Article  CAS  Google Scholar 

  32. Bommersbach P, Alemany-Dumont C, Millet JP et al (2006) Electrochim Acta 51:4011

    Article  CAS  Google Scholar 

  33. Tanno K, Itoh M, Sekiya H et al (1993) Corros Sci 34:1453

    Article  CAS  Google Scholar 

  34. Fiveash Data Management Inc (1996) FDM FTIR Spectra of Minerals and Inorganic Compounds

  35. Qu Q, Jiang S, Li L et al (2008) Corros Sci 50:35

    Article  CAS  Google Scholar 

  36. He ZQ (1996) J Appl Chem 13:55 (Chinese)

    CAS  Google Scholar 

  37. Al-Borno A, Islam M, Khraishi R (1989) Corrosion 45:970

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China under the Grant Number 50761007, 20762014 and the Natural Science Foundation of Yunnan province under the Grant Number 2006E0008Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Q., Li, L., Jiang, S. et al. Effect of sodium molybdate on the corrosion behavior of cold rolled steel in peracetic acid solution. J Appl Electrochem 39, 569–576 (2009). https://doi.org/10.1007/s10800-008-9694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9694-0

Keywords

Navigation