Skip to main content
Log in

Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h−1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

XR:

xylose reductase

XDH:

xylitol dehydrogenase

G6PDH:

glucose-6-phosphate dehydrogenase

XK:

xylulokinase

μ x :

maximum specific cell growth rate (h−1)

μ s :

maximum specific xylose consumption rate (gxylose/gcell h)

μ p :

maximum specific xylitol production rate (gxylitol/gcell h)

Y p/s :

xylitol yield coefficient (gxylitol/gxylose)

Y x/s :

cell yield coefficient (gcell/gxylose)

Q p :

xylitol volumetric productivity (gxylitol/l h)

References

  1. Lawford, H. G., & Rousseau, J. D. (1993). Applied Biochemistry and Biotechnology, 39–40, 667–685.

    Google Scholar 

  2. Gold, D., Mohagheghi, A., Cooney, C. L., & Wang, D. I. C. (2004). Biotechnology and Bioengineering, 23, 2105–2116.

    Article  Google Scholar 

  3. Helle, S. S., Murray, A., Lam, J., Cameron, D. R., & Duff, S. J. (2004). Bioresource Technology, 92, 163–71.

    Article  CAS  Google Scholar 

  4. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  5. Mäkinen, K. K. (1978). Birkhäuser Verlag, Basel.

  6. Vandeska, E. A. S., Kuzmanova, S., & Jeffries, T. W. (1995). World Journal of Microbiology and Biotechnology, 11, 213–218.

    Article  CAS  Google Scholar 

  7. Rodrigues, R. C., Sene, L., Matos, G. S., Roberto, I. C., Pessoa Jr., A., & Felipe, M. G. (2006). Current Microbiology, 53, 53–59.

    Article  CAS  Google Scholar 

  8. Kim, T. B., & Oh, D. K. (2003). Biotechnology Letters, 25, 2085–2088.

    Article  CAS  Google Scholar 

  9. Oh, D. K., Kim, S. Y., & Kim, J. H. (1998). Biotechnology and Bioengineering, 58, 440–444.

    Article  CAS  Google Scholar 

  10. Dominguez, J. M., Cruz, J. M., Roca, E., Dominguez, H., & Parajo, J. C. (1999). Applied Biochemistry and Biotechnology, 81, 119–130.

    Article  CAS  Google Scholar 

  11. Lunzer, R., Mamnun, Y., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (1998). Biochemical Journal, 336(Pt 1), 91–99.

    CAS  Google Scholar 

  12. Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Microbiology and Molecular Biology Reviews, 64, 34–50.

    Article  CAS  Google Scholar 

  13. Cho, J. Y., & Jeffries, T. W. (1998). Applied Environmental Microbiology, 64, 1350–1358.

    CAS  Google Scholar 

  14. Kim, M. S. C. Y., Seo, J. H., Jo, D. H., Park, Y. H., & Ryu, Y. W. D. (2001). Journal of Microbiology and Biotechnology, 11, 564–569.

    CAS  Google Scholar 

  15. Jin, Y. S., Cruz, J., & Jeffries, T. W. (2005). Applied Microbiology and Biotechnology, 68, 42–45.

    Article  CAS  Google Scholar 

  16. Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Biotechnology and Bioengineering, 93, 1196–1206.

    Article  CAS  Google Scholar 

  17. Nigam, J. N. (2001). Journal of Industrial Microbiology & Biotechnology, 26, 145–150.

    Article  CAS  Google Scholar 

  18. Hahn-Hagerdal, B., Karhumaa, K., Larsson, C. U., Gorwa-Grauslund, M., Gorgens, J., & van Zyl, W. H. (2005). Microbial Cell Factories, 4, 31.

    Article  CAS  Google Scholar 

  19. Jin, Y. S., & Jeffries, T. W. (2003). Applied Biochemistry and Biotechnology, 105–108, 277–286.

    Article  Google Scholar 

  20. Gurpilhares, D. B., Hasman, F. A., Pessoa Jr., A., & Roberto, I. C. (2006). Enzyme and Microbial Technology, 39, 591–595.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Singleton, V. L., & Rossi Jr., J. A. (1965). American Journal of Enology and Viticulture, 16, 144158.

    Google Scholar 

  23. Jin, Y. S., Jones, S., Shi, N. Q., & Jeffries, T. W. (2002). Applied Environmental Microbiology, 68, 1232–1239.

    Article  CAS  Google Scholar 

  24. Taherzadeh, M. J., Adler, L., & Liden, G. (2002). Enzyme and Microbial Technology, 31, 53–66.

    Article  CAS  Google Scholar 

  25. Rodrigues, R. C., Felipe, M. G., Roberto, I. C., & Vitolo, M. (2003). Bioprocess and Biosystems Engineering, 26, 103–107.

    Article  CAS  Google Scholar 

  26. Shi, N. Q., Cruz, J., Sherman, F., & Jeffries, T. W. (2002). Yeast, 19, 1203–1220.

    Article  CAS  Google Scholar 

  27. Alexander, N. (1986). Applied Microbiology and Biotechnology, 25, 203–207.

    Article  CAS  Google Scholar 

  28. Larsson, S., Palmqvist, E., Hägerdal, B. H., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  29. Dien, B. S., Kurtzman, C. P., Saha, B. C., & Bothast, R. J. (1996). Applied Biochemistry and Biotechnology, 57, 233–242.

    Article  Google Scholar 

Download references

Acknowledgement

Rita de C.L.B. Rodrigues gratefully acknowledges financial support by CNPq, Brazil, grant number 200702/2006-8. We thank Rayonier Performance Fibers for the SSL Xethanol for partial financial support, and Greg Hohensee for SSL sugar analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. L. B. Rodrigues.

Additional information

Prepared for 29th Symposium on Biotechnology for Fuels and Chemicals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, R.C.L.B., Lu, C., Lin, B. et al. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor. Appl Biochem Biotechnol 148, 199–209 (2008). https://doi.org/10.1007/s12010-007-8080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8080-4

Keywords

Navigation