Skip to main content
Log in

Molecular orientation in sheared molten thermotropic random copolyester

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The macromolecular alignment and texture orientation in sheared thermotropic copolyester were investigated using in situ wide-angle X-ray scattering (WAXS) and polarizing optical microscopy (POM). The molecular behavior was correlated with viscoelastic properties. The polymer is a random copolyester based on 60 mol% 1,4-hydroxybenzoic acid (B) and 40 mol% ethylene terephthalate (ET) units. X-ray scattering showed that the molecular chains were aligned along the flow direction. The degree of molecular orientation, \( {\left\langle {P_{2} } \right\rangle } \), is an increasing function of the applied shear rate. However, rheo-optics showed that shear flow could not orient the polydomain texture, i.e., neither defect stretching nor elimination of defects was observed. Instead, shear compressed the microdomains and gave rise to long-range orientation correlations. Rheology showed that the nematic melt is viscoelastic, the loss modulus G″ dominates the elastic modulus G′, and the dynamic viscosity η* is shear thinning. Moreover, the steady shear viscosity, η, also behaved shear thinning, while the first normal stress difference N 1 remained positive. The empirical Cox–Merz rule did not hold, \( \eta ^{ * } > \eta \), within the shear rate range studied. The microscopic and rheological properties suggest that B–ET is a flow-aligning nematic polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alderman NJ, Mackley MR (1985) Optical textures observed during the shearing of thermotropic liquid–crystal polymers. Faraday Discuss Chem Soc 79:149–160

    Article  CAS  Google Scholar 

  • Andresen EM, Mitchell GR (1998) Orientational behaviour of thermotropic and lyotropic liquid crystal polymer systems under shear flow. Europhys Lett 43:296–301

    Article  CAS  Google Scholar 

  • Baek SG, Magda JJ, Larson RG, Hudson SD (1994) Rheological differences among liquid crystalline polymers. II. Disappearance of negative N1 in densely packed lyotropes and thermotropes. J Rheol 38:1473–1503

    Article  CAS  Google Scholar 

  • Bedford SE, Yu K, Windle AH (1992) Influence of chain flexibility on polymer mesogenicity. J Chem Soc Faraday Trans 88:1765–1773

    Article  CAS  Google Scholar 

  • Beekmans F, Gotsis AD, Norder B (1996) Transient and steady state rheological behavior of the thermotropic liquid crystalline polymer Vectra B950. J Rheol 40:947–966

    Article  CAS  Google Scholar 

  • Blackwell J, Lieser G, Gutierrez GA (1983) Structure of p-hydroxybenzoate-ethylene terephthalate copolyester fibers. Macromolecules 16:1418–1422

    Article  CAS  Google Scholar 

  • Burghardt WR (1998) Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers. Macromol Chem Phys 199:471–488

    Article  CAS  Google Scholar 

  • Calundann GW, Jaffe M (1982) The Robert A. Welch Foundation conferences on chemical research, XXVI. Synthetic polymers, pp 247, Houston, TX, 15–17 Nov. 1982

  • Calundann GW, Charbonneau LF, Shepard JP (1991) Makromol Chem Macromol Symp 51:147–152

    CAS  Google Scholar 

  • Cinader DK, Burghardt WR (1998) Mixed orientation state induced by expansion flow of a thermotropic liquid crystalline polymer. Macromolecules 31:9099–9102

    Article  CAS  Google Scholar 

  • Cinader DK, Burghardt WR (1999) X-ray scattering studies of orientation in channel flows of a lyotropic liquid crystalline polymer. Polymer 40:4169–4180

    Article  CAS  Google Scholar 

  • Cinader DK, Burghardt WR (2000) Molecular orientation in channel flows of main-chain thermotropic liquid crystalline polymers. Rheol Acta 39:247–258

    Article  CAS  Google Scholar 

  • Colby RH, Gillmor JR, Galli G, Laus M, Ober CK, Hall E (1993) Linear viscoelasticity of side-chain liquid crystal polymers. Liq Cryst 13:233–245

    Article  CAS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  • de Gennes PG (1982) In: Ciferri AA, Krigbaum WR, Meyer RB (eds) Polymer liquid crystals. Academic, New York, p 115

    Google Scholar 

  • DeNeve T, Navard P, Kleman M (1993) Shear rheology and shear-induced textures of a thermotropic copolyesteramide. J Rheol 37:515–529

    Article  CAS  Google Scholar 

  • Deutsch M (1991) Orientational order determination in liquid crystals by X-ray diffraction. Phys Rev A44:8264–8270

    Google Scholar 

  • Elias F, Clarke SM, Peck R, Terentjev EM (1999) Equilibrium textures in main-chain liquid crystalline polymers. Europhys Lett 47:442

    Article  CAS  Google Scholar 

  • Elias F, Clarke SM, Peck R, Terentjev EM (2000) Nematic order drives phase separation in polydisperse liquid crystalline polymers. Macromolecules 33:2060–2068

    Article  CAS  Google Scholar 

  • Ernst B, Denn MM, Pierini P, Rochefort WE (1992) Rheological properties of liquid crystalline solutions of cis-poly(p-phenylenebenzobisoxazole) in polyphosphoric acid (PBO/PPA). J Rheol 36:289–302

    Article  CAS  Google Scholar 

  • Feijoo JL, Odell J, Keller A (1990) Synchrotron X-ray analysis of disorientation in nematic solutions of poly(1,4-phenylene-2,6 benzo bisthiazole). Polym Commun 31:42–44

    CAS  Google Scholar 

  • Gay P (1984) Introduction to crystal optics. Longman, London

    Google Scholar 

  • Gervat L, Mackley MR, Nicholson TM, Windle AH (1995) The effect of shear on thermotropic liquid crystalline polymers. Philos Trans R Soc Lond A350:1–27

    Google Scholar 

  • Giles DW, Denn MM (1994) The effect of suppression of offgassing on the rheometry of thermotropic liquid crystalline polymers. J Rheol 38:617–637

    Article  CAS  Google Scholar 

  • Graziano DJ, Mackley MR (1984) Shear induced optical textures and their relaxation behaviour in thermotropic liquid crystalline polymers. Mol Cryst Liq Cryst 106:73–93

    Article  CAS  Google Scholar 

  • Guskey SM, Winter HH (1991) Transient shear behaviour of a thermotropic liquid crystalline polymer in the nematic state. J Rheol 35:1191–1207

    Article  CAS  Google Scholar 

  • Hanna S, Romo-Uribe A, Windle AH (1993) Sequence segregation in molten liquid crystalline random copolymers. Nature 366:546–549

    Article  CAS  Google Scholar 

  • Hashimoto T, Nakai A, Shiwaku T, Hasegawa H, Rojstaczer S, Stein RS (1989) Small-angle light scattering from nematic liquid crystals: fluctuations of director field due to many-body interactions of disclinations. Macromolecules 22:422–429

    Article  CAS  Google Scholar 

  • Jackson WJ, Kuhfuss H (1976) Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters. J Polym Sci Polym Chem Ed 14:2043–2058

    Article  CAS  Google Scholar 

  • Jerman RE, Baird DG (1981) Rheological properties of copolyester liquid crystalline melts. I. Capillary rheometry. J Rheol 25:275–292

    Article  CAS  Google Scholar 

  • Kadoma IA, Ylitalo C, van Egmond JW (1997) Structural transitions in wormlike micelles. Rheol Acta 36:1–12

    Article  CAS  Google Scholar 

  • Kalika DS, Nuel L, Denn MM (1989) Gap dependence of the viscosity of a thermotropic liquid crystalline copolymer. J Rheol 33:1059–1070

    Article  CAS  Google Scholar 

  • Keates P, Mitchell G, Peuvrel-Disdier E, Navard P (1993) In situ X-ray scattering study of anisotropic solutions of hydroxypropylcellulose subjected to shear flow. Polymer 34:1316–1319

    Article  CAS  Google Scholar 

  • Keller A, Warner M, Windle AH (eds) (1994) Self-order and form in polymeric materials. Philos Trans R Soc Lond A 348

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Larson RG, Mead DW (1992) Development of orientation and texture during shearing of liquid–crystalline polymers. Liq Cryst 12:751–768

    Article  CAS  Google Scholar 

  • Larson RG, Mead DW (1993) The Ericksen number and Deborah number cascades in sheared polymeric nematics. Liq Cryst 15:151–169

    Article  CAS  Google Scholar 

  • Leadbetter AJ (1979) Structural studies of nematic, smectic A and smectic C phases. In: Luckhurst GR, Gray GW (eds) The molecular physics of liquid crystals. Academic, London, pp 285–316

    Google Scholar 

  • Leadbetter AJ, Norris EK (1979) Distribution functions in three liquid crystals from X-ray diffraction measurements. Mol Phys 38:669–686

    Article  CAS  Google Scholar 

  • Li MH, Brulet A, Davidson P, Keller P, Cotton JP (1993) Observation of hairpin defects in a nematic main-chain polyester. Phys Rev Lett 70:2297–2300

    Article  CAS  Google Scholar 

  • Luckhurst GR,Gray GW (eds) (1979) The molecular physics of liquid crystals. Academic, London

    Google Scholar 

  • Mackley MR, Pinaud P, Siekmann G (1981) Observation of disclinations and optical anisotropy in a mesomorphic copolyester. Polymer 22:437–446

    Article  CAS  Google Scholar 

  • Meesiri W, Menczel J, Gaur U, Wunderlich B (1982) J Polym Sci Polym Phys 20:719

    Article  CAS  Google Scholar 

  • Menczel J, Wunderlich B (1980) J Polym Sci Polym Phys 18:1433

    Article  CAS  Google Scholar 

  • Ober CK, McNamee S, Delvin A, Colby RH (1990) Chemical heterogeneity in liquid crystalline polyesters. In: Weiss RA, Ober CK (eds) Liquid crystalline polymers. ACS symp. series 435, Washington DC, pp 220–240

  • Picken SJ, Noirez L, Luckhurst GR (1998) Molecular conformation of a polyaramid in nematic solution from small angle neutron scattering and comparison with theory. J Chem Phys 109:7612–7617

    Article  CAS  Google Scholar 

  • Picken SJ, Aerts J, Visser R, Northolt MG (1990) Structure and rheology of aramid solutions: X-ray scattering measurements. Macromolecules 23:3849–3854

    Article  CAS  Google Scholar 

  • Picken SJ, Aerts J, Doppert HL, Reuvers AJ, Northolt MG (1991) Structure and rheology of aramid solutions: transient rheological and rheooptical measurements. Macromolecules 24:1366–1375

    Article  CAS  Google Scholar 

  • Picken SJ, van Wijk RJ, Lichtenbelt JWTh, Westerink JB, van Klink PJ (1995) Measurement of the domain growth kinetics in multidomain nematic liquid crystal polymers by means of the worm-like path model for multiple scattering. Mol Cryst Liq Cryst 261:535–547

    Article  CAS  Google Scholar 

  • Pople JA, Mitchell GR, Chai CK (1996) In situ time-resolving wide-angle X-ray scattering study of crystallization from sheared polyethylene melts. Polymer 37:4187–4191

    Article  CAS  Google Scholar 

  • Riti JB, Cidade MT, Godinho MH, Martins AF, Navard P (1997) Shear induced textures of thermotropic acetoxypropylcellulose. J Rheol 41:1247–1260

    Article  CAS  Google Scholar 

  • Romo-Uribe A (2001a) On the molecular orientation and viscoelastic behaviour of liquid crystalline polymers. The influence of macromolecular architecture. Proc R Soc Lond A457:207–229

    Google Scholar 

  • Romo-Uribe A (2001b) Smectic-like order in the log-rolling flow of thermotropic random copolymers. A time-resolved wide-angle X-ray scattering study. Proc R Soc Lond A 457:1327–1342

    Article  CAS  Google Scholar 

  • Romo-Uribe A (2006) Shear-induced long-range spatial correlation and banded texture in thermotropic copolyester. In-situ light and X-ray scattering. Europhys Lett 76:609–615

    Article  CAS  Google Scholar 

  • Romo-Uribe A (2007) Long-range orientation correlations and molecular alignment in sheared thermotropic copolyester. In-situ light and X-ray scattering. Polym Adv Technol (in press). DOI 10.1002/pat.878

  • Romo-Uribe A, Windle AH (1993) Flow-induced orientational transition in thermotropic random copolyesters. Macromolecules 26:7100–7102

    Article  CAS  Google Scholar 

  • Romo-Uribe A, Windle AH (1996) Log-rolling alignment in main-chain thermotropic liquid crystalline polymers: an in-situ WAXS study. Macromolecules 29:6246–6255

    Article  CAS  Google Scholar 

  • Romo-Uribe A, Windle AH (1999) A rheo-optical and dynamic X-ray scattering study of flow-induced textures in main-chain thermotropic liquid crystalline polymers: the influence of molecular weight. Proc R Soc Lond A 455:1175–1201

    CAS  Google Scholar 

  • Romo-Uribe A, Lemmon TJ, Windle AH (1997a) Structure and linear viscoelastic behaviour of main-chain thermotropic liquid crystalline polymers. J Rheol 41:1117–1141

    Article  CAS  Google Scholar 

  • Romo-Uribe A, Mather PT, Chaffee KP, Han CD (1997b) Molecular and textural ordering of thermotropic polymers in shear flow. MRS Symp Proc 465:63–68

    Google Scholar 

  • Sawyer LC, Jaffe M (1986) The structure of thermotropic copolyesters. J Mater Sci 21:1897–1913

    Article  CAS  Google Scholar 

  • Sawyer LC, Linstid HC, Romer M (1998) Emerging applications for neat LCPs. Plast Eng 54:37–41

    CAS  Google Scholar 

  • Somma E, Nobile MR (2004) The linear viscoelastic behavior of a series of molecular weights of the thermotropic main-chain liquid crystal polymers HBA/HNA 73/27. J Rheol 48:1407–1423

    Article  CAS  Google Scholar 

  • Viney C, Windle AH (1982) Phase transformations in the thermotropic liquid crystal polymer: 60/40 PABA/PET. J Mater Sci 17:2661–2670

    Article  CAS  Google Scholar 

  • Viney C, Mitchell GR, Windle AH (1983) Optical microstructure of oriented liquid crystal polymers. Polym Commun 24:145–147

    CAS  Google Scholar 

  • Wang XJ, Warner M (1992) Theory of main chain nematic polymers with spacers of varying degree of flexibility. Liq Cryst 12:385–401

    Article  Google Scholar 

  • Wilson TS, Baird DG (1992) Transient elongational flow behaviour of thermotropic liquid crystalline polymers. J Non-Newton Fluid Mech 44:85–112

    Article  CAS  Google Scholar 

  • Windle AH, Viney C, Golombok R, Donald AM, Mitchell GR (1985) Molecular correlation in thermotropic copolyesters. Faraday Discuss Chem Soc 79:55–78

    Article  CAS  Google Scholar 

  • Wissbrun KF (1981) Rheology of rod-like polymers in the liquid crystalline state. J Rheol 25:619–662

    Article  CAS  Google Scholar 

  • Wunderlich B (1973) Macromolecular physics, vol I. Academic, New York

    Google Scholar 

  • Yoon HN, Charbonneau LF, Calundann GW (1992) Adv Mater 4:206

    Article  CAS  Google Scholar 

  • Zhou WJ, Kornfield JA, Ugaz VM, Burghardt WR, Link DR, Clark NA (1999) Dynamics and shear orientation behavior of a main-chain thermotropic liquid crystalline polymer. Macromolecules 32:5581–5593

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The in situ X-ray experiments were carried out at the Department of Materials Science and Metallurgy, University of Cambridge; the author gratefully acknowledges the support of Prof. Alan H. Windle, FRS. Thanks to the anonymous referees, the manuscript has benefited from their insightful comments. The financial support of DGAPA–UNAM (PAPIIT project IN107307) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Romo-Uribe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romo-Uribe, A. Molecular orientation in sheared molten thermotropic random copolyester. Rheol Acta 46, 1139–1152 (2007). https://doi.org/10.1007/s00397-007-0192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0192-9

Keywords

Navigation