Skip to main content
Log in

Motility and gravitactic orientation of the flagellate,Euglena gracilis, impaired by artificial and solar UV-B radiation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The effects of ultraviolet radiation on the gravitactic orientation of the freshwater flagellate,Euglena gracilis, were determined by a real time image analysis system. Both artificial UV radiation and solar radiation in a temperature-controlled growth chamber were employed. Histograms of gravitaxis showed that the degree of orientation decreased with increasing exposure time; this can be quantified using the Rayleigh test and upper quadrant summation. The effects of artificial UV radiation on the orientation are considerably stronger than those of solar radiation, probably because the radiation source emits higher fluence rates below 300 nm than found in solar radiation. The effects of monochromatic ultraviolet radiation on motility have been determined, and an action spectrum has been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  1. Aderhold R (1988) Beiträge zur Kenntnis richtender Kräfte bei der Bewegung niederer Organismen. Jen Z Med Naturwiss 22:311–342

    Google Scholar 

  2. Batschelet E (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. In: Galles SR, Schmidt-Koenig K, Jacobs GJ, Belleville RF (eds) Animal orientation and navigation. Washington: NASA, pp 61–91

    Google Scholar 

  3. Batschelet E (1981) Circular statistics in biology. London: Academic Press

    Google Scholar 

  4. Bean B (1984) Microbial geotaxis. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. New York, London: Plenum Press, pp 163–198

    Google Scholar 

  5. Berg HC (1985) Physics of bacterial chemotaxis. In: Colombetti G, Lenci F, Song P-S (eds) Sensory perception and transduction in aneural organisms. New York, London: Plenum Press, pp 19–30

    Google Scholar 

  6. Björn LO, Murphy TM (1985) Computer calculation of solar ultraviolet radiation at ground level. Physiol Veg 23:555–561

    Google Scholar 

  7. Block J, Briegleb W, Sobick V, Wohlfarth-Bottermann KE (1986) Confirmation of gravisensitivity in the slime moldPhysarum polycephalum under near weightlessness. Adv Space Res 6:143–150

    PubMed  Google Scholar 

  8. Briegleb W (1984) Acceleration reactions of cells and tissues—their genetic-phylogenic implications. Adv Space Res 4:5–7

    PubMed  Google Scholar 

  9. Briegleb W (1988) Ground-borne methods and results in gravitational cell biology. Physiologist 31:44–47

    Google Scholar 

  10. Briegleb W, Block I (1986) Classification of gravity effects on “free” cells. Adv Space Res 6:15–19

    PubMed  Google Scholar 

  11. Briegleb W, Schatz A (1980) Changes of periodic protoplasmic movements on the fast clinostat. The Physiologist 23:137–138

    Google Scholar 

  12. Briegleb W, Schatz A (1980) Changes of periodic protoplasmic movements on the fast clinostat. Adv Physiol Sci 19:261–264

    Google Scholar 

  13. Briegleb W, Neubert J, Schatz A, Hordinsky JR, Cogoli A (1982) Cell morphological, ontogenic, and genetic reactions to 0-g simulation and hyper-g. Acta Astronautica 9:47–50

    PubMed  Google Scholar 

  14. Brinkmann K (1968) Keine Geotaxis bei Euglena. Z Pflanzenphysiol 59:12–16

    Google Scholar 

  15. Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. New York: Academic Press, pp. 131–177

    Google Scholar 

  16. Checcucci A, Colombetti G, Ferrara R, Lenci F (1976) Action spectra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigments. Photochem Photobiol 23:51–54

    PubMed  Google Scholar 

  17. Cogoli A, Valluchi M, Reck J, Müller M, Briegleb W, Cordt I, Michel C (1979) Human lymphocyte activation is depressed at low-g and enhanced at high-g. The Physiologist 22:29–30

    Google Scholar 

  18. Colombetti G, Häder D-P, Lenci F, Quaglia M (1982) Phototaxis in Euglena gracilis: effect of sodium azide and triphenylmethyl phosphonium ion on the photosensory transduction chain. Curr Microbiol 7:281–284

    Google Scholar 

  19. Creutz C, Diehn B (1976) Motor responses to polarized light and gravity sensing in Euglena gracilis. J Protozool 23:552–556

    Google Scholar 

  20. Diehn B, Feinleib M, Haupt W, Hildebrand E, Lenci F, Nultsch W (1977) Terminology of behavioral response of motile microorganisms. Photochem Photobiol 26:559–560

    Google Scholar 

  21. Doughty MJ, Diehn B (1983) Photosensory transduction in the flagellated alga,Euglena gracilis. IV. Long-term effects of ions and pH on the expression of step-down photobehavior. Arch Microbiol 134:204–207

    Google Scholar 

  22. Doughty MJ, Diehn B (1984) Anion sensitivity of motility and step-down photophobic responses ofEuglena gracilis. Arch Microbiol 138:329–332

    Google Scholar 

  23. Ekelund N, Häder D-P (1988) Photomovement and photo-bleaching in twoGyrodinium species. Plant Cell Physiol 29:1109–1114

    Google Scholar 

  24. Esquivel DMS, de Barros HGPL (1986) Motion of magnetotactic microorganisms. J Exp Biol 121:153–163

    Google Scholar 

  25. Fenchel T, Finlay BJ (1986) Photobehavior of the ciliated protozoon Loxodes: taxic, transient, and kinetic responses in the presence and absence of oxygen. J Protozool 33:139–145

    Google Scholar 

  26. Frankel RB (1984) Magnetic guidance of organisms. Annu Rev Biophys Bioeng 13:85–103

    PubMed  Google Scholar 

  27. Freeman H (1961) On the encoding of arbitrary geometric configurations. IRE Trans EC-10:260–268

    Google Scholar 

  28. Freeman H (1974) Computer processing of line-drawing images. Comput Surv 6:57–97

    Google Scholar 

  29. Freeman H (1980) Analysis and manipulation of lineal map data. Map data processing. New York: Academic Press, pp 151–168

    Google Scholar 

  30. Fukui K, Asai H (1985) Negative geotactic behavior ofParamecium caudatum is completely described by the mechanism of buoyancy-oriented upward swimming. Biophys J 47:479–482

    Google Scholar 

  31. Häder D-P (1984) Effects of UV-B on motility and photoorientation in the cyanobacterium,Phormidium uncinatum. Arch Microbiol 140:34–39

    Google Scholar 

  32. Häder D-P (1985) Effects of UV-B on motility and photobehavior in the green flagellate,Euglena gracilis. Arch Microbiol 141:159–163

    Google Scholar 

  33. Häder D-P (1986) Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate,Euglena gracilis. Photochem Photobiol 44:651–656

    Google Scholar 

  34. Häder D-P (1987) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate,Euglena gracilis. Arch Microbiol 147:179–183

    PubMed  Google Scholar 

  35. Häder D-P (1987) Effects of UV-B irradiation on photomovement in the desmid,Cosmarium cucmis. Photochem Photobiol 46:121–126

    Google Scholar 

  36. Häder D-P (1988) Computer-assisted image analysis in biological sciences. Proc Indian Acad Sci (Plant Sci) 98:227–249

    Google Scholar 

  37. Häder D-P (1988) Ecological consequences of photomovement in microorganisms. J Photochem Photobiol B: Biol 1:385–414

    Google Scholar 

  38. Häder D-P, Griebenow K (1988) Orientation of the green flagellate,Euglena gracilis, in a vertical column of water. FEMS Microbiol Ecol 53:159–167

    Google Scholar 

  39. Häder D-P, Häder M (1988) Ultraviolet-B inhibition of motility in green and dark bleachedEuglena gracilis. Curr Microbiol 17:215–220

    Google Scholar 

  40. Häder D-P, Häder MA (1988) Inhibition of motility and phototaxis in the green flagellate,Euglena gracilis, by UV-B radiation. Arch Microbiol 150:20–25

    Google Scholar 

  41. Häder D-P, Häder MA (1989) Effects of solar UV-B irradiation on photomovement and motility in photosynthetic and colorless flagellates. Environ Exp Bot 29:273–282

    Google Scholar 

  42. Häder D-P, Vogel K (1990) Simultaneous tracking of flagellates in real time by image analysis. J Math Biol, in press

  43. Häder D-P, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates,Euglena gracilis andOchromonas danica. Arch Microbiol 130:78–82

    Google Scholar 

  44. Häder D-P, Watanabe M, Furuya M (1986) Inhibition of motility in the cyanobacterium,Phormidium uncinatum, by solar and monochromatic UV irradiation. Plant Cell Physiol 27:887–894

    Google Scholar 

  45. Häder D-P, Lebert M, DiLena MR (1986) New evidence for the mechanism of phototactic orientation ofEuglena gracilis. Curr Microbiol 14:157–163

    Google Scholar 

  46. Häder D-P, Rhiel E, Wehrmeyer W (1987) Phototaxis in the marine flagellateCryptomonas maculata. J Photochem Photobiol 1:115–122

    Google Scholar 

  47. Häder D-P, Rhiel E, Wehrmeyer W (1988) Ecological consequences of photomovement and photobleaching in the marine flagellateCryptomonas maculata. FEMS Microbiol Ecol 53:9–18

    Google Scholar 

  48. Hemmersbach-Krause R (1988) Vergleichende Untersuchungen zur Gravitaxis und zur Morphologie vonLoxodes undParamecium. Forschungsbericht der deutschen Forschungs-und Versuchsanstalt für Luft- und Raumfahrt 88-27:1–155

    Google Scholar 

  49. Jensen P (1983) Über den Geotropismus niederer Organismen. Pflüger's Arch ges Phys 53:428–480

    Google Scholar 

  50. Kessler JO (1985) Hydrodynamic focusing of motile algal cells. Nature 313:218–220

    Google Scholar 

  51. Kessler JO (1986) The external dynamics of swimming microorganisms. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress Ltd. 4, pp 258–307

  52. Kuroda K, Kamiya NMJA, Yoshimoto Y, Hiramoto Y (1986)Paramecium behavior during video centrifuge-microscopy. Proc Japan Acad 62, Ser B:117–121

    Google Scholar 

  53. Lenci F, Colombetti G, Häder D-P (1983) Role of flavin quenchers and inhibitors in the sensory transduction of the negative phototaxis in the flagellate,Euglena gracilis. Curr Microbiol 9:285–290

    Google Scholar 

  54. MacNab RM (1985) Biochemistry of sensory transduction in bacteria. In: Colombetti G, Lenci F, Song P-S (eds) Sensory perception and transduction in aneural organisms. New York, London: Plenum Press, pp 31–46

    Google Scholar 

  55. Mardia KV (1972) Statistics of directional data. London: Academic Press

    Google Scholar 

  56. Mast SO (1911) Light and behavior of organisms. New York: John Wiley & Sons

    Google Scholar 

  57. Mizuno T, Maeda K, Imae Y (1984) Thermosensory transduction inEscherichia coli. In: Oosawa F, Yoshioka T, Hayashi H (eds) Transmembrane signaling and sensation. Tokyo: Japan Sci Soc Press and VNU Sci Press BV, Netherlands, pp 147–195

    Google Scholar 

  58. Nultsch W, Agel G (1986) Fluence rate and wavelength dependence of photobleaching in the cyanobacteriumAnabaena variabilis. Arch Microbiol 144:268–271

    Google Scholar 

  59. Nultsch W, Häder D-P (1988) Photomovement in motile microorganisms. II. Photochem Photobiol 47:837–869

    PubMed  Google Scholar 

  60. Ofer S, Nowik I, Bauminger ER, Papaefthymiou GC, Frankel RB, Blakemore RP (1984) Magnetosome dynamics in magnetotactic bacteria. J Biophys 46:57–64

    Google Scholar 

  61. Poff KL (1985) Temperature sensing in microorganisms. In: Colombetti G, Lenci F, Song P-S (eds) Sensory perception and transduction in aneural organisms, New York, London: Plenum Press, pp 299–307

    Google Scholar 

  62. Rhiel E, Häder D-P, Wehrmeyer W (1988) Photo-orientation in a freshwaterCryptomonas species. J Photochem Photobiol B: Biol 2:123–132

    Google Scholar 

  63. Rhiel E, Häder D-P, Wehrmeyer W (1988) Diaphototaxis and gravitaxis in a freshwaterCryptomonas. Plant Cell Physiol 29:755–760

    PubMed  Google Scholar 

  64. Roberts AM (1970) Geotaxis in motile micro-organisms. J Exp Biol 53:687–699

    PubMed  Google Scholar 

  65. Schwarz F (1884) Der Einfluß der Schwerkraft auf die Bewegungsrichtung von Chlamydomonas und Euglena. Dtsch Bot Ges 2:57–72

    Google Scholar 

  66. Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci 71:3363–3366

    PubMed  Google Scholar 

  67. Shimmen T (1981) Quantitative studies on step-down photo-phobic response ofEuglena in an individual cell. Protoplasma 106:37–48

    Google Scholar 

  68. Sobick V, Briegleb W, Block I (1983) Is there an orientation of the nuclei in microplasmodia ofPhysarum polycephalum? Physiologist 26:129–130

    Google Scholar 

  69. Starr RC (1964) The culture collection of algae at Indiana University. Am J Bot 51:1013–1044

    Google Scholar 

  70. Sterenborg HJCM, van der Leun JC (1987) Action spectra for tumorigenesis by ultraviolet radiation. In: Passchier WF, Bosujakovic BFM (eds) Human exposure to ultraviolet radiation: risks and regulations. Amsterdam: Elsevier Science Publishers, pp 173–190

    Google Scholar 

  71. Taneda K (1987) Geotactic behavior inParamecium caudatum. I. Geotaxis assay of individual specimen. Zool Sci 4:781–788

    Google Scholar 

  72. Taneda K, Miyata S, Shiota A (1987) Geotactic behavior inParamecium caudatum. II. Geotaxis assay in a population of the specimens. Zool Sci 4:789–795

    Google Scholar 

  73. Verworn M (1889) Die polare Erregung der Protisten durch den galvanischen Strom. Pflüger's Arch Physiol 45:1–36

    Google Scholar 

  74. Winet H, Jahn TL (1974) Geotaxis in protozoa: I. A propulsion-gravity model for Tetrahymena (Ciliata). J Theor Biol 46:449–455

    PubMed  Google Scholar 

  75. Wolke A, Niemeyer F, Achenbach F (1987) Geotactic behavior of the acellular myxomycetePhysarum polycephalum. Cell Biol Int Rep 11:525–528

    Google Scholar 

  76. Wolken JJ, Shin E (1958) Photomotion inEuglena gracilis. I. Photokinesis. II. Phototaxis. J Protozool 5:39–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häder, DP., Liu, SM. Motility and gravitactic orientation of the flagellate,Euglena gracilis, impaired by artificial and solar UV-B radiation. Current Microbiology 21, 161–168 (1990). https://doi.org/10.1007/BF02092116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02092116

Keywords

Navigation