Skip to main content
Log in

Expression of Cu, Zn-superoxide dismutase gene from Saccharomyces cerevisiae in Pichia pastoris and its resistance to oxidative stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The gene for the Cu, Zn-superoxide dismutase (SOD) from the yeast Saccharomyces cerevisiae was cloned, characterized, and overexpressed in the methylotrophic Pichia pastoris. The sod gene sequence obtained is 465 bp and encodes 154 amino acid residues. The sod gene sequence was cloned into the pPIC9K vector, yielding pAB22. The linearized pAB22 DNA, digested with restriction enzyme SacI, was transformed into the genome of the GS115 strain of the yeast P. pastoris. The SOD was purified from the cultured yeast by ammonium sulfate precipitation and DEAE-cellulose column chromatography. This relatively simple purification method produced a single band on analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The overexpressed SOD protein was shown to have immunologically biologic activity and to be enzymatically active. The yeast overexpressing Cu, Zn-SOD appeared to be more resistant to oxidative stress such as paraquat, menadione, and heat shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fridovich, I. (1979), Adv. Inorg. Biochem. 1, 69–70.

    Google Scholar 

  2. Gralla, E. B., Thiele, D. J., Silar, P., and Valentine, J. S. (1991), Proc. Natl. Acad. Sci. USA 88, 8558–8562.

    Article  CAS  Google Scholar 

  3. Heinzen, R. A., Frazier, M. E., and Mallavia, L. P. (1992), Infect. Immun. 60(9), 3814–3823.

    CAS  Google Scholar 

  4. McCord, J. M. (1974), Science 185, 529–531.

    Article  CAS  Google Scholar 

  5. Flohe, L., Giertz, H., and Beckman, R. (1985), Handbook of Inflammation, vol. 5, Elsevier Science, New York.

    Google Scholar 

  6. Oberley, L. W. and Buettner, G. R. (1979), Cancer Res. 39, 1141–1149.

    CAS  Google Scholar 

  7. Fridovich, I. (1983), Annu. Rev. Pharmacol. Toxicol. 23, 239–257.

    Article  CAS  Google Scholar 

  8. Steinman, H. M. (1980), J. Biol. Chem. 255, 6758–6765.

    CAS  Google Scholar 

  9. Hartman, J. R., Geller, T., Yavin, Z., Bartfeld, D., Kanner, D., Aviv, H., and Gorecki, M. (1986), Proc. Natl. Acad. Sci. USA 83, 7142–7146.

    Article  CAS  Google Scholar 

  10. Hallewell, R. A., Mills, R., Tekamp-Olson, P., et al. (1987), Biotechnology 5, 363–366.

    Article  CAS  Google Scholar 

  11. Reddy, M. V. and Gangadharam, P. R. (1992), Infect Immun. 60, 2386–2390.

    CAS  Google Scholar 

  12. Sherman, F. (1986), in Methods in Yeast Genetics (Amberg, D. C. and Burke, D. J., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 125–128.

    Google Scholar 

  13. McCord, J. M., Keele, B. B., and Fridovich, I. (1971), Proc. Natl. Acad. Sci. USA 68, 1024–1027.

    Article  CAS  Google Scholar 

  14. Kumagai, Y., Shinyashiki, M., Sun, G. F., Shimojo, N., and Sagai, M. (1994), Experientia 50, 673–676.

    Article  CAS  Google Scholar 

  15. Schagger, H. and Jagow, G. (1987), Anal. Biochem. 166, 368–379.

    Article  CAS  Google Scholar 

  16. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual, Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  17. Deisseroth, A. and Dounce, A. L. (1978), Biochim. Biophys. Acta, 537, 86–99.

    Google Scholar 

  18. Jamieson, D. J., Stephen, D. W., and Terriere, E. C. (1996), FEMS Microbiol. Lett. 138, 83–88.

    Article  CAS  Google Scholar 

  19. Liu, X. D. and Thiele, D. J. (1996), Genes Dev. 10, 592–603.

    Article  CAS  Google Scholar 

  20. Moradas-Ferreinra, P., Costa, V., Piper, P., and Mager, W. (1996), Mol. Microbiol. 19, 651–658.

    Article  Google Scholar 

  21. Kim, Y. H., Park, K. H., and Rho, H. M. (1996), J. Biol. Chem. 271, 24,539–24,543.

    CAS  Google Scholar 

  22. Nettleton, C. J., Bull, C., Baldwin, T. O., and Fee, J. A. (1984), Proc. Natl. Acad. Sci USA 81, 4970–4973.

    Article  CAS  Google Scholar 

  23. Hassan, H. M. and Fridovich, I. (1977), J. Bacteriol. 129, 1574–1583.

    CAS  Google Scholar 

  24. Touati, D. and Carlioz, A. (1986), in Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine, Rotilio, G., ed. Elsevier, New York, pp. 287–292.

    Google Scholar 

  25. Gregory, E. M., Goscin, S. A., and Fridovich, I. (1974), J. Bacteriol. 117, 456–460.

    CAS  Google Scholar 

  26. Autor, A. P. (1982). J. Biol. Chem. 257, 2713–2718.

    CAS  Google Scholar 

  27. Orr, W. C. and Sohal, R. S. (1994), Science 263, 1128–1130.

    Article  CAS  Google Scholar 

  28. Hwang, C. S., Rhie, G., Kim, S. T., Kim, Y. R., Huh, W. K., Baek, Y. U., and Kang, S. O. (1999), Biochem. Biophys. Acta 1427(2), 245–255.

    CAS  Google Scholar 

  29. Hernandez-Saavedra, N. Y. and Romero-Geraldo, R. (2001), Yeast, 14(6), 573–581.

    Article  Google Scholar 

  30. Hernandez-Saavedra, N. Y., Egly, J. M., and Ochoa, J. L. (1998), Yeast 18(3), 1227–1238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JR., Yu, P. Expression of Cu, Zn-superoxide dismutase gene from Saccharomyces cerevisiae in Pichia pastoris and its resistance to oxidative stress. Appl Biochem Biotechnol 136, 127–139 (2007). https://doi.org/10.1007/BF02685943

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685943

Index Entries

Navigation