Skip to main content
Log in

Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Because of the high temperature applied in the steam pretreatment of lignocellulosic materials, different types of inhibiting degradation products of saccharides and lignin, such as acetic acid and furfural, are formed. The main objective of the present study was to examine the effect of acetic acid and furfural on the cellulase production of a filamentous fungus Trichoderma reesei RUT C30, which is known to be one of the best cellulase-producing strains. Mandels’s mineral medium, supplemented with steam-pretreated willow as the carbon source at a concentration corresponding to 10 g/L of carbohydrate, was used. Four different concentration levels of acetic acid (0–3.0 g/L) and furfural (0–1.2 g/L) were applied alone as well as in certain combinations. Two enzyme activities, cellulase and β-glucosidase, were measured. The highest cellulase activity obtained after a 7-d incubation was 1.55 FPU/mL with 1.0 g/L of acetic acid and 0.8 g/L of furfural added to the medium. This was 17% higher than that obtained without acetic acid and furfural. Furthermore, the results showed that acetic acid alone did not influence the cellulase activity even at the highest concentration. However, β-glucosidase activity was increased with increasing acetic acid concentration. Furfural proved to be an inhibiting agent causing a significant decrease in both cellulase and β-glucosidase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynd, L. R. (1996), Annu. Rev. 21, 403–465.

    Google Scholar 

  2. Bashir, S. and Lee, S. (1994), Fuel Sci. Technol. Int. 12, 1427–1473.

    CAS  Google Scholar 

  3. Wyman, C. E. (1995), Solar Eng. 1, 359–366.

    Google Scholar 

  4. von Sivers, M. and Zacchi, G. (1995), Bioresour. Technol. 51, 43–52.

    Article  Google Scholar 

  5. von Sivers, M. and Zacchi, G. (1996), Bioresour. Technol. 56, 131–140.

    Article  Google Scholar 

  6. Jurasek, L. (1979), Dev. Ind. Microbiol. 20, 177–189.

    Google Scholar 

  7. Saddler, J. N., Brownell, H. H., Clermont, L. P., and Levitin, N. (1982), Biotechnol. Bioeng. 24, 1389–1402.

    Article  CAS  Google Scholar 

  8. Grethlein, H. E., Allen, D. C., and Converse, A. O. (1984), Biotechnol. Bioeng. 26, 1498–1505.

    Article  CAS  Google Scholar 

  9. Olsson, L. and Hahn-Hägerdal, B. (1993), Process Biochem. 28, 249–257.

    Article  CAS  Google Scholar 

  10. Palmquist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 470–476.

    Article  Google Scholar 

  11. Szengyel, Z., Zacchi, G., and Réczey, K, (1997), Appl. Biochem. Biotechnol. 63–65, 351–362.

    Article  Google Scholar 

  12. Clark, T. A. and Mackie, K. L. (1984), J. Chem. Technol. Biotechnol. 34B, 101–110.

    CAS  Google Scholar 

  13. Larsson, S., Reimann, A., Nilvebrant, N., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  14. Theander, O. and Åman, P. (1978), Swed. J. Agric. Res. 8, 189–194.

    CAS  Google Scholar 

  15. Eklund, R., Galbe, M., and Zacchi, G. (1988), Int. Symp. Alcohol Fuels 8, 101–105.

    Google Scholar 

  16. Eklund, R., Galbe, M., and Zacchi, G. (1995), Bioresour. Eng. 52, 225–239.

    Article  CAS  Google Scholar 

  17. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, M., Stenberg, K., Szengyel, Z., Tengborg, C., and Zacchi, G. (1996), Bioresour. Technol. 58, 171–179.

    Article  CAS  Google Scholar 

  18. Hägglund, E. (1951), in Chemistry of Wood, Academic, New York, pp. 324–332.

    Google Scholar 

  19. Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    Article  CAS  Google Scholar 

  20. Réczey, K., Szengyel, Z., Eklund, E., and Zacchi, G. (1996), Bioresour. Technol. 57, 25–30.

    Article  Google Scholar 

  21. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  22. Berghem, L. E. E. and Petterson, L. G. (1974), Eur. J. Biochem. 46, 295–305.

    Article  CAS  Google Scholar 

  23. Lambert, R. J. and Stratford, M. (1999), J. Appl. Microbiol. 86, 157–164.

    Article  CAS  Google Scholar 

  24. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., and Lidén G. (1999), J. Biosci. Bioeng. 87, 169–174.

    Article  CAS  Google Scholar 

  25. Sternberg, D. (1976), Biotechnol. Bioeng. Symp. 6, 35–53.

    CAS  Google Scholar 

  26. Mukhopadhyay, S. N. and Malik, R. K. (1980), Biotechnol. Bioeng. 22, 2237–2250.

    Article  CAS  Google Scholar 

  27. Tangnu, S. K., Blanch, H. W., and Wilke, C. R. (1981), Biotechnol. Bioeng. 23, 1837–1849.

    Article  CAS  Google Scholar 

  28. Chahal, P. S., Chahal, D. S., and André, G. (1992), J. Ferm. Bioeng. 74, 126–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Zacchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szengyel, Z., Zacchi, G. Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 89, 31–42 (2000). https://doi.org/10.1385/ABAB:89:1:31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:89:1:31

Index Entries

Navigation